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Abstract—Power quality information is useful not only to
determine electricity fitness but also for another important
application: load identification. One approach to identify loads is
through non-intrusive load monitoring systems that estimate the
nature and operation of individual appliances with measurements
in a single point. In this work, load identification is addressed
as a classification task by taking advantage of power quality
information. Therefore, discriminant analysis of power quality
characteristics are proposed, thus requiring simpler design and
fitting processes than traditional techniques. In this regard,
classifiers based on linear and quadratic discriminant analysis
are implemented for laboratory measurements with noticeable
performance.

I. INTRODUCTION

Power quality field analyses the deviations of the electricity
service and the loads. This area is so important that the
identification of disturbances and their sources might bring
technical and legal implications. In general, power quality
demands to measure variables such as voltage, current, power
or their combinations, to determine voltage sags and swells,
long duration over voltages, undervoltages, interruptions, un-
balances, voltage fluctuations and harmonics, etc. Less con-
ventional applications could be dealt through monitoring those
variables. This is the case of load disaggregation systems
which enquire the individual loads nature and operation, and
estimate how each appliance contributes with a power Pi to
the total costumer power consumption PT given by (1).

PT (t) =

n∑
i=1

Pi(t) (1)

Traditionally load disaggregation used a dedicated sensor
for each load, sometimes indirectly through microphones,
accelerometers and video-cameras [1],[2]. However,
monitoring the same variables useful for power quality
analysis only in a single point has exhibited advantages
in reliability, communications efforts, costs and installation
times. The latter approach is called Non-Intrusive Load
Monitoring (NILM). Experts in power quality have formulated
the need of research about the remote identification of load
transitions and characteristics to assist the utilities to take

decisions about the operation of transmission and distribution
system [3].

Some authors suggest the possible benefits of NILM
systems to track loads that be detrimental for the power
quality. Loads such as computers and other office equipment,
gas discharge lighting fixtures, and adjustable-speed motor
drives, etc. can draw distorted, non-sinusoidal current
waveforms [4]. They are often called ”power quality offender
loads” or ”critical loads” [5], [6]. Those loads interfere with
other’s operation and re-scheduling or other decisions might
be taken to restore the quality. Thus, correlation between
changes in harmonic content specific appliance operation
might drive to identify these critical loads.

Steady or transient state conditions might be considered
for power quality disturbances as well as for NILM. In
general, steady state analysis determines individual loads by
identifying the instants at which electric power measurement
changed from a steady state to another one, while transient
based analysis identifies the loads through a representation
in the frequency domain. The pioneer works in NILM
made a steady state based analysis with the real and
reactive power sampled at 1 Hz [7]. Subsequent works
introduced the transient based analysis, which is more
suitable for identifying non-linear loads and provides details
to distinguish the loads for the influence of the physical
task [8]. The sampling frequency of the sensor should be
higher for the transient-based than for the steady state analysis.

One of the strategies for NILM is to initially identify
each appliance through classification models. Previous
works include neural networks, support vector machines,
among others. However, these traditional techniques are
computationally intensive and their performance is deeply
affected by the number of classes. Little work have considered
the use of classifiers with simpler models. Therefore, this
paper contributes with the use of power quality characteristics
together with discriminant analysis that require simpler
design and fitting processes. In this sense, classifiers based on
discriminant analysis are implemented. Measurements were



acquired in the laboratory and they were used to evaluate
these algorithms.

The rest of this document is structured as follows. First,
section II describes a system to perform load identification
with the non-intrusive approach. Second, section III presents
the methods for the proposed experiment and the results are
stated in section IV. Finally, the conclusions wrap up this
document.

II. NON-INTRUSIVE LOAD IDENTIFICATION ALGORITHMS

The procedure of a NILM system begins when the total
signal is acquired at a single point. Some works use general
purpose sensors (current clamps, ammeters, voltmeters) with
different sampling rates. Other works include smart electrical
meters with the argument of the advantage of using existing
infrastructure. Beyond the sensor selection, the principle is
to select and mathematically characterize the load behaviour
through electrical signals called load signatures. Afterwards,
mathematical algorithms are applied to the aggregated
signal to identify the appliances. These algorithms are often
divided into two categories: event based and not-event based
algorithms [9]. The difference is that the first does involve
detection and classification of events to identify state changes
in the appliances, i.e. from OFF to ON. The first approach
might be carried out either as an optimization [10], [11],
[12], [13], [14] or as a pattern recognition problem [1], [15],
while the second is probabilistic [16], [17], [18].

A pattern recognition approach is implemented in this
solution. The aim is to compute some features from stationary
voltages and current signals in order to identify loads, i.e.
only electric variables are regarded. The system has the
following stages as shown in Fig. 1:

• Measurements: Signals are taken repeatedly to build
a training dataset. Each measurement is recorded as a
.mat file to be processed offline in Matlab. Voltage and
branch currents are measured for every setup.

• Feature extraction: Features from time and Fourier
domain are computed to distinguish one appliance
from another. They are extracted from the electrical
signals (current and voltage) some time after a switching.

• Classification: A supervised learning is carried out to
classify the events. According to previous tests, the unsu-
pervised learning methods work better for visualization
or abstraction than for obtaining accurate classification.
Cross-validation is used to test the algorithms. Conse-
quently, some models are created.

III. METHODS

A. Measurement Framework

Measurements were taken in the laboratory as shown in Fig.
2. A power source emulates the voltage supply of Colombian

Measurements

Classification

Feature Extraction

Models

Fig. 1: Block Diagram of NILM Systems

utilities at 120V/60 Hz, with a variation in the voltage ac-
cording to the allowed values in the regulation between 108
and 126V. A sinusoidal voltage is set to supply the load.
Voltage and current measurements are obtained through a
data acquisition system of several channels with simultaneous
sampling at 50 kHz. This system comprises a set of data
acquisition cards connected to a chassis to allow the power
and the communication with the computer. Both the data
acquisition system and the power source are controlled by
a computer. The load includes residential appliances that are
usually present in conventional Colombian households. More
details about these appliances are displayed in Table I.

Fig. 2: Measurement setup. DAQ stands for data acquisition
system.

Once the measurements are taken, they are processed off-
line to derive the power characteristics of loads and to test the
algorithms.

B. Load signatures

Data from every appliance are considered as one class.
Load signatures from power and current are computed and
they work as features to build classification models. The
features for this study are:



TABLE I: Equipment under test

Appliance Rated Power [W] State
CFL 9 ON
CFL 20 ON

LED lamp 7 ON
Incandescent Bulb 75 ON

Halogen Lamp 50 ON
Halogen Lamp 70 ON

Fan 48 High speed

Blender 600 Low
High

Refrigerator 1,15 kWh /24h ON (Compressor working)
Sandwich maker 750 ON

Hair Dryer 1875 Low
High

Iron 1200 ON at a given mode
Cellphone Charger ON (During charging)

TV 90 Video mode
Laptop 40 ON (No programs running)

Desktop PC 250 ON (No programs running)
Monitor 180 ON (No bright changes)

• RMS value of current (I)
• Harmonic component of current (IH)
• Active Power (P )
• Fundamental reactive power (Q)
• Fundamental power factor (PF1)
• Total harmonic distortion of the current (THDi)

They are basically computed from steady state signals, this
is, an integer number of cycles is captured and processed,
when an appliance is individually connected. The results can
be useful in this scenario of individual operation or when an
appliance switching ON is detected once other appliances were
previously operating too.

C. Classification Method

The appliance identification is addressed as a classification
problem where the measurements are used to create models
to separate one appliance from others and test them. Thus,
a mapping yi = F (xi, θ) is achieved between the inputs xi
and the class labels yi which represent classes or categories
(appliances for this work), where θ represents some parameters
and F the model. Once the model is trained using labeled
instances, it is used to assign a label to an unknown instance.
Classifiers based on discriminant analysis are implemented in
this work whose theoretical bases are explained as follows.

1) Discriminant analysis classifier: This technique was
introduced by R. Fisher. Two types of discriminant analysis
classifiers can be implemented: linear (LDA) or quadratic
(QDA). During the training, discriminant functions are com-
puted for each class, and then they are employed to establish
decision boundaries and regions for each class [19]. The
difference between linear and the quadratic classifiers lies in
the shape of the separation boundaries between regions of the
classes. These boundaries are straight lines for LDA classifiers,
and conic sections (ellipses, hyperbolas, or parabolas) for
QDA classifiers. The input space is split into a set of regions

bounded by decision boundaries. The assumption is that each
class generates data with a Gaussian mixture distribution and
all the distributions are different. Then this technique fits a
multivariate normal density to each class. Likelihood ratios
are considered to assign the instances to the classes.

Discriminant analysis classification belongs to the family
of generative algorithms which model the distribution of the
observed variables. Two types of models can be built. For the
linear method, the model considers that the means of each
class vary, while for the quadratic method, not only the means
but also the covariances of each class vary. So the mean and
covariance parameters of each class should be estimated. The
procedure to build the models comprises the following steps
[20]:

1) Compute the mean of each class

µi =
1

ni

ni∑
i=1

xi, xi ∈ yi (2)

for i = 1, ..., c, where c is the number of classes and ni
is the number of instances of the class yi.

2) Compute the a priori probability of each class

P (yi) =
ni
N
, (3)

where N is the number of instances that conform the
input data.

3) Calculate the covariance matrix for each class

Ci =
∑
x∈yi

(x− µi)(x− µi)
T , (4)

for i = 1, ..., c. The resulting matrix is symmetric.
Determine the discrimination function fi, for i = 1, ..., c,
i.e. for all the classes.

The decision boundary between two classes is the difference
between the two discriminant functions. Once the models are
built, they can be used to predict the class of an unknown
instance according to the next steps [20]:

1) Evaluate the discriminant functions of all the classes at
the instance to be predicted.

2) Select the discriminant function fk with the highest
value or score for that point or instance, i.e. fk > fi, for
i = 1, ..., c, k 6= i. If the scores of any two discriminant
functions are equal, thus the unknown instance is on the
boundary between both classes.

3) Assign the class label yk to the unknown instance.

2) Evaluation criteria: A stratified 10-fold cross validation
is implemented to prevent overfitting. Cross validation is a
suitable practice that ensures classifier stability and bring a
more accurate estimation of the classifier carried out. In this
process, the dataset is divided into 10 folds. Then every fold
is tested once, thus taking advantage of the complete set.

The metric for evaluation criteria is the classification ac-
curacy. This is computed as the ratio of number of correct



predictions to the total number of input samples, thus:

Accuracy =
Number of correct predictions

Total number of predictions
(5)

In addition, confusion matrices are used to show the complete
model performance. They has two dimensions: the actual and
the predicted classes. Their diagonal entries are the true posi-
tives, i.e. the cases that are assigned to the correct class, while
the off diagonal entries represent the cases where classes are
confused. In turn, classification accuracies can be computed
from this matrix as the ratio of the main diagonal entries over
the total matrix entries.

IV. RESULTS

Table II depicts the performance of the classifiers with the
complete set of features mentioned in Section III. In order to
explore the performance with subsets of features, a forward
feature selection is performed. This process does not evaluate
evaluate all possible combinations of the features unlike the
brute force strategy.

TABLE II: Classifier performance with the complete set of
features

Classifier Classification rates
Linear 93,67%

Quadratic 100%

Forward feature selection involves the following steps:
1) Evaluate the performance of subsets that comprise only

one feature and find the best subset bestF1.
2) Evaluate subsets that comprise two features: bestF1 and

another one. Find the best subset bestF2.
3) Evaluate subsets that comprise three features: the fea-

tures in bestF2 and another one. Find the best subset
bestF3.

And so on until completing bestFn where n is the length
of the complete input feature vector. The most promising
feature vector is the one with the best performance in all the
steps. The progress of the forward feature selection algorithm
is presented in Fig. 3. Several local maxima are observed,
then it is recommended to complete all the steps to avoid to
pick a local instead of a global maximum. An abrupt change
is visualized for both classifiers in the 7th iteration which
corresponds to beginning of the evaluation of feature vectors
of length two.

Feature vectors with the lowest misclassification rates and
shortest lengths are selected. In the case of quadratic classi-
fiers, the performance obtained with the complete set of fea-
tures is 100%, but the resulting feature vector is shorter, then
the feature selection is still useful. Feature vectors resulting
from the feature selection are presented in Table III for linear
and quadratic classifiers. Tables II and III indicate that feature
selection improved the performance of linear classifiers in
1.58% and the length of the feature vector for all the classifiers.

Figure 4 shows the confusion matrices for the classifiers.
The diagonal cells represent the instances where appliances
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(a) Linear classifier
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(b) Quadratic classifier

Fig. 3: Feature selection iterations

TABLE III: Classifier performance with the subsets obtained
with the forward feature selection.

Classifier Feature Accuracy Elapsed
Vector Time [s]

Linear [I, IH , Q] 95.25 % 0.0807

Quadratic

[I, IH ]

100%

0.0626
[IH , PF1] 0.0601
[I, THDi] 0.0600
[IH , THDi] 0.0604

are correctly identified and the off-diagonals cells indicate
misclassifications. The darker the cells, the higher the numbers
of correct or incorrect identifications. None misclassification
is found for the quadratic classifier, while linear classifier
predicts the cellphone charger as it were the led lamp and the
other way around, and it confuses slightly the incandescent
bulb with the TV. This is explained by the similarity of the
power consumption of theses appliances.

V. CONCLUSION

Power quality information is used together with discriminant
analysis for load identification. Here a classification task
was achieved with discriminant analysis classifiers, thus
distinguishing the operation of appliances in steady state.



(a) Linear classifier

(b) Quadratic classifier

Fig. 4: Confusion matrices.

Linear and quadratic discriminant analysis classifiers
were implemented. These classifiers yielded noticeable
performance, with the advantage of a quite reduced training
and fitting times.

For future works the study of distorted environments
is suggested. Power quality is a more mature field than
Non-Intrusive Load Monitoring (NILM), so retrieving the
experiences in power quality is promising to give support to
the research in NILM, specially the techniques and knowledge
for disturbances recognition.

REFERENCES

[1] A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P. O’Hare, “Real-Time
Recognition and Profiling of Appliances through a Single Electricity
Sensor,” in 2010 7th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).
IEEE, Jun. 2010, pp. 1–9.

[2] S. Gupta, M. S. Reynolds, and S. N. Patel, “ElectriSense: single-point
sensing using EMI for electrical event detection and classification in the
home,” Computer Engineering, pp. 139–148, 2010.

[3] M. H. J. Bollen, P. Ribeiro, I. Y. H. Gu, and C. A. Duque, “Trends
, challenges and opportunities in power quality research,” European
Transactions on Electrical Power, no. August 2009, pp. 3–18, 2009.

[4] L. K. Norford and S. B. Leeb, “Non-intrusive electrical load monitoring
in commercial buildings based on steady-state and transient load-
detection algorithms,” Energy and Buildings, vol. 24, no. 1, pp. 51–64,
1996.

[5] S. Shaw, S. Leeb, L. Norford, and R. Cox, “Nonintrusive Load Mon-
itoring and Diagnostics in Power Systems,” IEEE Transactions on
Instrumentation and Measurement, vol. 57, no. 7, pp. 1445–1454, Jul.
2008.

[6] S. B. Leeb, S. R. Shaw, and J. L. Kirtley, “Transient event detection
in spectral envelope estimates for nonintrusive load monitoring,” IEEE
Transactions on Power Delivery, vol. 10, no. 3, pp. 1200–1210, 1995.

[7] G. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the
IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[8] R. Sawyer, J. Anderson, E. Foulks, J. Troxler, and R. Cox, “Creating
low-cost energy-management systems for homes using non-intrusive
energy monitoring devices,” in 2009 IEEE Energy Conversion Congress
and Exposition. IEEE, Sep. 2009, pp. 3239–3246.

[9] K. D. Anderson, M. E. Berges, A. Ocneanu, D. Benitez, and J. M.
Moura, “Event detection for Non Intrusive load monitoring,” in IECON
2012 - 38th Annual Conference on IEEE Industrial Electronics Society.
IEEE, Oct. 2012, pp. 3312–3317.

[10] M. Baranski and J. Voss, “Detecting Patterns of Appliances from Total
Load Data Using a Dynamic Programming Approach,” in Fourth IEEE
International Conference on Data Mining (ICDM’04). IEEE, 2004, pp.
327–330.

[11] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura, and K. Ito, “Nonintrusive
appliance load monitoring based on integer programming,” Electrical
Engineering in Japan, vol. 174, no. 2, pp. 2742–2747, 2008.

[12] M. Baranski and J. Voss, “Genetic algorithm for pattern detection in
NIALM systems,” in 2004 IEEE International Conference on Systems,
Man and Cybernetics (IEEE Cat. No.04CH37583). IEEE, 2004, pp.
3462–3468.

[13] S. Srivastava, J. R. P. Gupta, and M. Gupta, “PSO and neural-network
based signature recognition for harmonic source identification,” in
TENCON 2009 2009 IEEE Region 10 Conference. IEEE, 2009, pp.
1–5.

[14] Y.-H. Lin, M.-S. Tsai, and C.-S. Chen, “Applications of fuzzy classifica-
tion with fuzzy c-means clustering and optimization strategies for load
identification in NILM systems,” in 2011 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2011). IEEE, Jun. 2011, pp. 859–866.

[15] Y.-H. Lin and M.-S. Tsai, “Applications of hierarchical support vector
machines for identifying load operation in nonintrusive load monitoring
systems,” in 2011 9th World Congress on Intelligent Control and
Automation. IEEE, Jun. 2011, pp. 688–693.

[16] T. Zia, D. Bruckner, and A. Zaidi, “A hidden Markov model based
procedure for identifying household electric loads,” in IECON 2011
- 37th Annual Conference of the IEEE Industrial Electronics Society.
IEEE, Nov. 2011, pp. 3218–3223.

[17] H. Gonçalves, A. Ocneanu, M. Bergés, and R. H. Fan, “Unsupervised
disaggregation of appliances using aggregated consumption data,” in
1st KDD Workshop on Data Mining Applications in Sustainability
(SustKDD), 2011.

[18] H. Shao, V. Tech, and M. Marwah, “A Temporal Motif Mining Approach
to Unsupervised Energy Disaggregation,” in 1st International Workshop
on Non-Intrusive Load Monitoring, Pittsburgh, PA, 2012, pp. 1–2.

[19] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York: Wiley, 2001.

[20] A. Tharwat, “Linear vs. quadratic discriminant analysis classifier: a
tutorial,” International Journal of Applied Pattern Recognition, vol. 3,
p. 145, 01 2016.


