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In this work, we propose a novel approach for Facial Expression Recognition (FER). We introduce the 

TPOEM (Temporal Patterns of Oriented Edge Magnitudes) features, which are volumetric extensions of 

the known POEM features by exploring adjacent frames and also temporal derivatives. To cope with the 

increase in the code length produced by TPOEM, we also present a novel coding scheme for the binary 

codes. TPOEM features are computed within non-overlapping image patches, and the final classification 

is achieved by combining the per-patch scores. The results showed increased accuracy compared to or 

better than state-of-the-art methods, while keeping the execution time low. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Facial expression recognition is frequently performed on a daily

asis by humans for interpersonal communication, and it is an im-

ortant mechanism of recognizing emotions. However, automatic

acial expression recognition (FER) is a relatively new field of re-

earch. One of the first relevant works was done by Kenji [16] ,

pplying Optical Flow algorithms. For the sake of comparison, the

elated problem of facial recognition has been studied since the

eventies, with important works dated from back then [12,15] .

onetheless, FER is a relevant field of research because the visual

nformation contained in a facial expression can be used in appli-

ations such as evaluating retail efficiency [34] (e.g. evaluate fa-

ial expressions to determine the satisfaction of customers) and

uman-Computer Interaction [3,42] . Despite the significant im-

rovements in the past few years, there is still no consensus about

he best approach in order to tackle the FER problem. A key issue

s to devise discriminative features that allow fast and efficient FER,

articularly when dealing with video sequences to capture tempo-

al variations. 

In this work, we present novel descriptors called TPOEMs (Tem-

oral Patterns of Oriented Edge Magnitudes), which are built upon

he known Patterns of Oriented Edge Magnitudes (POEMs) [44] by

dding temporal information, which is important in the context of

ER. Since the use of volumetric information in LBP-like coding

ncreases the code length exponentially, we also propose a novel

oding scheme for TPOEM, which is applied to non-overlapping
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atches of a face image. The final FER is obtained by combining

he spatial patches using an adaptive weighted average, yielding

esults comparable to or better than state-of-the-art techniques in

ubject-independent validation tests with real time execution. 

The remainder of this paper is organized as follows. In

ection 2 we present a brief summary of existing facial expression

ecognition methods, while the proposed approach is presented

n Section 3 . Section 4 presents the experimental results, showing

he accuracy of TPOEM using different configurations and compar-

sons with competitive approaches for different databases. Finally,

n Section 5 we summarize the work and provide some perspec-

ives and future work. 

. Related work 

Facial Emotion Recognition (FER) from images is a typical prob-

em of pattern classification: we want to label the input data (an

mage or video sequence) as one of the existing classes. There are

wo main types of features used in FER: the first one is based on

eometric features, which are descriptors of facial geometry given

 set of feature points that aim to characterize the shape of the

ace depending on the location of these points; the second type is

ased on appearance features, which describe textures within the

mage that may be descriptors of gestures, wrinkles and skin folds

ue to facial muscle movements. This division of features in these

wo categories is used by many authors, as shown by [6] . Next,

e revise some FER techniques based on geometric or appearance

eatures. 
nition using temporal POEM features, Pattern Recognition Letters 
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2.1. Geometric-based features 

Geometric-based features are used to describe the location and

shape of facial features within the image. This is usually done by

detecting and tracking fiducial points in important specific areas

of the face, aiming to obtain the shape and size of the mouth,

eyebrows and eyes (related to non-transient features), as well as

wrinkles and furrows (related to transient features). The difference

between transient and non-transient features is that the former

do not appear all the time on the face, but they are temporar-

ily present due to some muscular activation, while the latter are

present all the time (although their shape, location and size differ

due to the particular facial expression of the individual). To de-

tect and track a set of fiducial points in the image/frame, most

works have used AAMs (Active Appearance Models) [5] to describe

the location and variation of the fiducial points. In order to de-

scribe the geometric characteristics of the face, distances between

feature points, relative sizes, angles and shapes may be used to

obtain a characteristic feature vector, which is used in the clas-

sification stage. Some works rely on the automatic detection and

tracking of the fiducial points, but other systems need manual as-

sistance or fully manual location of the fiducial points. Pantic and

Rothkrantz [32] used a combination of fiducial point detectors and

trackers based on the fact that each kind of detector performs well

under particular circumstances, so that a combination of detectors

provided a better overall tracking [36] . developed a facial expres-

sion recognition system in which the fiducial points were tracked

using a specialized point tracker algorithm, and recognition was

performed using a motion model. In [19] , the user manually in-

puts the node of a Candide grid 

1 in the first frame and then the

system deforms the grid to match the images along the video se-

quence. In [4] , an AAM was used with second-order minimization,

while Ghimire and Lee [10] explored 52 facial landmarks that are

detected and tracked using EGM (Elastic Graph Matching). 

2.2. Appearance-based features 

Appearance-based methods rely on the description of textures

computed from the detected face. The general idea is that these

textures are adequate descriptors to characterize gestures that rep-

resent facial expressions. The main advantage of using appearance-

based methods is that they do not require the detection and track-

ing of fiducial points, whose calculation is usually costly and may

need manual assistance. However, there is no consensus solution

on which feature approach is more convenient, because works

based on either approach have obtained similarly good results. 

The main goal of appearance-based methods is to transform the

pixel information of the face into a lower dimensionality repre-

sentation that conveys information related to the different facial

expressions. Some used techniques are PCA (Principal Component

Analysis), ICA (Independent Component Analysis), kPCA (kernel-

PCA), wavelets, Gabor features, sparse codes and LBP (Local Binary

Patterns) [8] . implemented and tested several appearance-based

representation methods, including PCA, ICA, LFA (Local Feature

Analysis), LDA (Linear Discriminant Analysis) and Gabor wavelets,

and the conclusion was that Gabor-based representations produced

the best results. As such, Gabor wavelets have been used in sev-

eral other facial expression recognition works, such as Zhang et al.

[51] and Deng et al. [7] . However, the main drawback of Gabor

wavelets is the high computational cost and memory requirements

[26] . Lee et al. [21] presented an approach based on sparse repre-

sentations, focusing on intra-class variation reduction and subject-

independent scenarios. 
1 The Candide grid is a face mask consisting of 100 polygons (238 polygons for 

the Candide-2), used to the codification of faces by global and local Action Units. 
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A popular trend in appearance-based methods is the use of LBP

nd related codes, whose calculation is faster and the representa-

ion of facial features is adequate to perform the expression classi-

cation, as in [1,9,14,31,37] . In [53] , VLBP was introduced. VLBP is

n extension of regular LBP in order to include information about a

umber of neighboring frames, so that temporal transitions in the

equence are also considered. In [52] , LBP-TOP, an orthogonal re-

lization of LBP codes over the image sequence was implemented.

amirez Rivera et al. [35] introduced the Local Directional Num-

er (LDN) pattern, which also explores binary patterns along edge

esponses computed at different orientations. 

More recently, methods based on deep learning architectures

ave become more popular. Such methods perform feature extrac-

ion implicitly (along the layers of the network), and work with

aw image pixels. For instance, deep belief learning was explored

y Liu et al. [23] , whereas Convolutional Neural Networks (CNNs)

ere used in several works, such as [2,13,18,24,25,30] . 

Also, some methods combine geometric features with appear-

nce features. A good recent example is the method by Happy and

outray [11] , which encodes the local texture information at salient

acial patches, extracted from fiducial points, using LBP patterns.

ariq et al. [41] explore overlapping image patches and extract lo-

al descriptors (e.g. SIFT) within the patches, encoding location in-

ormation in super-vectors. 

Although methods based on deep learning have been present-

ng the best accuracy (similarly to other areas of computer vi-

ion), they require a considerably large training set, and execution

ime might be an issue when using conventional CPU/GPU config-

rations. The goal in this work is to present an accurate yet fast

ethod for FER, as presented next. 

. The proposed approach 

The input is a video sequence containing a face, and each frame

s split into non-overlapping spatial patches . Within each patch,

 temporal neighborhood is used to compute the proposed de-

criptors, called Temporal Pattern Oriented of Edge Magnitudes

TPOEM), which are based on oriented spatial derivatives and also

emporal derivatives. Each patch is then characterized by a set of

istograms of TPOEM features, an and initial score is assigned per

atch/orientation. These scores are then combined using an adap-

ive weighted average, such that patches with more discrimination

ower present larger weights. The overview of the proposed ap-

roach is shown in Fig. 1 , and each step is presented in details

ext. 

.1. Temporal pattern oriented of edge magnitudes 

POEM codification [43,44] was developed to combine desirable

haracteristics from micro-pattern methods and more globally ori-

nted methods. More precisely, POEM was devised to be discrim-

native, robust, and computationally inexpensive in both terms of

ime and storage requirement. 

The first step to extract POEM features is to calculate the gradi-

nt image at each pixel, which is discretized into a set of N equally

paced orientations θn , for n ∈ { 0 , . . . , N − 1 } . Then, a local his-

ogram of gradient orientations is computed over pixels within a

patial region, called cell, using the gradient magnitude as weight.

he central pixel of the cell is then characterized by the accumu-

ated magnitudes at each discretized orientation. 

Finally, information about neighboring cells is encoded using

BP within another spatial region, called block. More precisely,

uch encoding at a given pixel p and orientation θn is given by
nition using temporal POEM features, Pattern Recognition Letters 
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Fig. 1. Illustration of the POEM-based FER classifier. 
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2 The number of temporal neighbors can be increased, but at the cost of increas- 
OEM 

θn 

P,L,N (p) = 

P−1 ∑ 

j=0 

f (s p,θn 
− s c j ,θn 

)2 

j , (1)

here s p,θn 
and s c j ,θn 

are the cumulative gradient magnitudes

long orientation θn for the pixel under analysis p and surrounding

ixels c j , which are the centers of their corresponding cells. Also, P

s the number of neighboring pixels used in the LBP computation,

 is the size of the block (that defines how spatially distant p is

rom c j ), and 

f (x ) = 

{
1 , if x ≥ 0 

0 , otherwise 
(2) 

s the unit step function. In [44] , POEM codes are computed using

he traditional 8 neighbors ( P = 8 ), but here we let the number of

eighbors to be generic. There is also an additional parameter W

mplicit to the POEM codification, which is the size of the cell used

o obtain the cumulative magnitudes. The final POEM feature set

t each pixel p is the concatenation of these unidirectional POEM

alues along all the discretized orientations 

POEM codification [43,44] was successfully used in the context

f Face Recognition (FR), which explores typically still images. Al-

hough Facial expression recognition (FER) can also be performed

y the evaluation of a single frame or an image, it is intuitive to

hink that more information can be extracted from a video se-

uence, since a facial expression is the temporal transition from

 neutral stance and a peak expression. As in the Volumetric LBP

VLBP) [52] , the core idea is extend the neighborhood in which the

BP codes are computed by adding volumetric (spatio-temporal)

nformation. However, instead of using a spherical neighborhood

s proposed in [52] , we present a neighborhood that is suitable for

 more efficient implementation by re-using information from past

rames. We also include temporal derivatives in the computation

f the code, which adds extra information about the dynamics of

he facial expression. 

Formally, let us consider a given pixel p under analysis at frame

 . Let s t,r,θn 
denote the accumulated gradient magnitude at frame

 , orientation θn , at a pixel r ∈ { c 0 , . . . , c P−1 , p} within a block with

ize L (as in the POEM coding), around (and including) the cen-

i

Please cite this article as: E.A. Silva Cruz et al., Facial expression recog
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ral pixel r = p. Given other two frames 2 t − T and t + T , where

 denotes the temporal spacing, we first find the spatio-temporal

eighbors of p . For the current frame t , there are P neighbors

tored in N sets V θn 
p,t given by 

 

θn 

p,t = 

{
s t,r,θn 

| r ∈ { c 0 , . . . , c P−1 } 
}
, (3) 

or n ∈ { 0 , . . . , N − 1 } . For both surrounding frames t − T and t + T ,

here are P + 1 neighbors stored in sets V θn 
p,t±T 

, given by 

 

θn 

p,t±T 
= 

{
s t±T,r,θn 

| r ∈ { c 0 , . . . , c P−1 , p} 
}
. (4) 

inally, the set V θn 
p,t containing all spatiotemporal neighbors of p at

 given orientation θn is given by 

 

θn 

p,t = V 

θn 

p,t ∪ V 

θn 

p,t−T 
∪ V 

θn 

p,t+ T , (5)

.e. it is obtained by concatenating all neighbors. As it can be ob-

erved, there are 3 P + 2 samples in V θn 
p,t , which is the binary code

ength for each orientation θn . 

Once the volumetric texture is obtained, we define the Volu-

etric POEM (VPOEM) at the central pixel p in frame t as 

POEM 

θn 

T,P,L,N (p, t) = 

(3 P+1) ∑ 

q =0 

f ( v θn ,q − s t,p,θn 
) 2 

q , (6) 

here v θn ,q is the (q + 1) th element of V θn 
p,t , and f the unit step

unction defined in Eq. (2) . 

As mentioned before, a cylindrical region was chosen instead of

he original spherical region proposed in [52] . The main reason for

hat is to keep computational cost under control: when a spherical

egion is used, the whole dynamic texture must be re-computed as

he frame under analysis t changes. With the proposed neighbor-

ood, t depends on t − T and t + T , and when we advance time in

teps T , the next frame t + T will depend on t and t + 2 T . Since the

ylindrical cross-sections of our volume are constant, all the accu-

ulated gradient magnitudes at frames t and t + T can be com-

letely re-used, leading to an incremental procedure presented in

lgorithm 1 . It should be run for each pixel p and orientation θn ,

nd for the sake of clarity these variables were omitted in the al-

orithm. 
ng the binary code length. 

nition using temporal POEM features, Pattern Recognition Letters 
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Algorithm 1 Pseudo algorithm for volumetric texture extraction 

at a given pixel p and orientation θn . 

1: procedure VPOEM 

2: t ← T 

3: V ← V θn 
p,t ( Eq. (3) ) 

4: V ± ← V θn 
p,t±T 

( Eq. (4) ) 

5: V ← V θn 
p,t ( Eq. (5) ) 

6: Compute VPOEM using Eq. (6) 

7: repeat 

8: t ← t + T 

9: V ← V − V −
10: Compute V + using Eq. (4) 

11: V ← V ∪ V + 
12: Compute VPOEM using Eq. (6) 

13: until end of video sequence 
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Another way to include temporal information is in the com-

putation of the POEM codification itself: instead of computing

the oriented gradients just in a set of spatial orientations θn , n ∈
{ 0 , . . . , N − 1 } , we also incorporate a temporal derivative. For the

sake of compactness in the notation, let θN denote such temporal

dimension. 

The spatial information encoded in the accumulated magni-

tudes is computed based on sums the cells. Although a analogous

process could be employed for the time derivatives, using a larger

temporal window would probably mix information from different

facial expressions into the same code. Hence, we decided to use a

forward difference scheme to encode temporal derivatives, so that

the input to the LBP code in the temporal orientation θN is given

by 

s ′ t,p,θN 
= I t+ T,p − I t,p , (7)

where I t,p is the intensity of pixel p at frame t . 

The final descriptor, Temporal Pattern Oriented of Edge Magni-

tudes (TPOEM) is defined as the concatenation of the VPOEM with

the additional information provided by the temporal derivatives: 

TPOEM 

θn 

T,P,L,N = 

⎧ ⎨ 

⎩ 

VPOEM 

θn 

T,P,L,N if n < N 

P−1 ∑ 

j=0 

f (s ′ 
t,c j ,θN 

− s ′ 
t,p,θN 

)2 

j if n = N 

. (8)

For computing TPOEM, the same parameters ( N, W, L, P ) used

for POEM are needed, plus the temporal parameter T . However,

the number of possible codes in TPOEM is much larger than POEM

( 2 3 P+2 versus 2 P using a direct coding scheme), which can be high

even for relatively small values of P as noted in [53] . The use of

uniform coding (codes for which there are at most two bitwise

transitions from 0 to 1 or vice-versa when traversed circularly), as

used in [53] , drastically reduces the length of the final histogram:

for B bits, there are only B (B − 1) uniform codes, and all non-

uniform codes are assigned to the same bin. That means that com-

puting TPOEM with P = 8 would lead to ≈ 67 M raw codes com-

pared to only 650 uniform codes. Our hypothesis is that such re-

duction also affects the discrimination of the volumetric texture,

since different textural patterns may generate the same uniform

code. To cope with this issue, we propose a novel coding scheme,

described next. 

3.2. A new coding scheme 

Our coding scheme is based on two-stages: (i) extension of uni-

form coding to better discriminate volumetric textures, and (ii)

code clustering to reduce the number of bins in the final his-

togram. As mentioned before, the traditional definition of unifor-

mity presents a drastic reduction in the total number of codes:
Please cite this article as: E.A. Silva Cruz et al., Facial expression recog

(2017), http://dx.doi.org/10.1016/j.patrec.2017.08.008 
 (B − 1) versus 2 B for raw codification. Clearly, the reduction rate

ncreases as the number of bits B increase, so that many differ-

nt raw codes are mapped to the same uniform code (leading to

 possible loss in the discrimination power). Due to this observa-

ion, the concept of uniformity was redefined as a code having at

ost N T transitions from 0 to 1 or 1 to 0 when circularly traversed,

here N T is an even number. Larger values of N T yield more uni-

orm codes (and more discrimination), while the opposite happens

ith smaller values for N T . 

If increasing the number of uniform codes is good to get better

iscrimination among volumetric textures, it also generates longer

istograms. Since our histogram matching is performed within

mall patches (i.e. not many samples are available), the histograms

end to be sparse. To reduce the number of remaining uniform

odes, a clustering scheme is also applied. Our hypothesis was that

or a wide variety of textures, several uniform codes (with the ex-

ended definition of uniformity) could represent the same texture,

nd hence being redundant. To test this hypothesis, we selected a

et of random videos (378) from Youtube, with a total duration of

pproximately 10 0 0 min. Small variations of the videos were ob-

ained by the addition of noise and by cropping, to increase the

atabase size, for a total of approximately 5M frames. The videos

id not include more than one scene, so to guarantee smooth tran-

itions between frames (and roughly uniform temporal texture).

POEM codification was performed for closely located pixels along

ll the videos (called groups), and the co-occurrence of each pair

f codes within the same group was stored in a similarity matrix

 , normalized by the most frequent code between the two under

nalysis (to account for the uneven occurrence of the codes). 

Large entries in M indicate raw codes that occur together

or the same volumetric textural pattern. In this work, we first

rouped together all pairs of codes ( i,j ) for which M ij > T s , where T s
s a similarity threshold. This pairwise strategy is then propagated

ierarchically based on associativity, clustering together groups

ith elements in common: if ( i,j ) and ( j,k ) are paired, then ( i,j,k )

re clustered into a single bin in the final codification scheme. As

or the threshold T s , it is selected adaptively such the final his-

ogram contains approximately a target number of clusters N b is

chieved in the end of the process. 

.3. Facial expression recognition using TPOEM 

In this work, we tackled the 6-expression problem, related to

he six basic emotions (Anger, Disgust, Fear, Happiness, Sadness,

nd Surprise), as well as the 7-expression problem, which refers

o the six basic emotions plus Neutral stance. Given an input video

equence, the face is identified at each frame and resized to a stan-

ard resolution (128 × 128 pixels). The TPOEM feature computation

iven by Eq. (8) produces, for each pixel p , a set of N + 1 LBP-like

odes TPOEM 

θn 
P,L,N 

(p) , one for each orientation θn (including the

emporal orientation). They encode local information, but the ex-

ent of this locality depends on the block size L and cell size W . To

ncorporate more spatial information, the whole image is divided

nto a set of non-overlapping patches disposed along a rectangu-

ar grid on the face region (64 in the total, using an 8 × 8 grid),

s illustrated in Fig. 1 . Within each of these patches, we compute

he histograms at each orientation individually, so that a total of

 = 64(N + 1) oriented patches are generated for each image. 

In [43,44] , a similar approach was used, but the histograms

or the patches were concatenated into a single (large) feature

ector that characterize the whole face, and dimensionality re-

uction techniques based on whitening and PCA were used. We

ested their approach for FER, but WPCA dimensionality reduction

as able to reduce the dimensionality of data by 50–60% approx-

mately, but the transformed dataset did not provide better classi-

cation rates, and in some cases the classification rates were dras-
nition using temporal POEM features, Pattern Recognition Letters 
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Fig. 2. Weights of the patches for three orientations, and their average (for the sake 

of illustration). 
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ically lowered. In this work, we performed an individual match-

ng process for each patch (for which the feature vector presents

ower dimensionality), and then combined the results into a global

istance value for the whole facial expression. 

Let us consider a training set formed by histograms Tra i,k,n , re-

ated to the n -th training sample, k -th patch and i -th expression.

he prototype histogram Av i,k for each patch k and i -th expression

s given by the mean per-expression histogram, i.e. 

v i,k = 

1 

N i 

N i ∑ 

n =1 

Tra i,k,n , (9) 

here N i is the number of training samples of the i -th expression.

In the test phase, we retrieve the histogram Val k,m 

related to

est sample m at patch k , and compare it to the class prototypes

v i,k of the same patch and all expressions i . Although several

istogram-based distances can be used, our experiments showed

hat the χ2 distance, given by 

 i,k,m 

= 

∑ 

x 

(
Av i,k (x ) − Val k,m 

(x ) 
)2 

Av i,k (x ) + Val k,m 

(x ) 
, (10) 

s a good choice. In Eq. (10) , x corresponds to each element within

he TPOEM code (i.e. each histogram bin). 

To find the overall distance d i,m 

between sample m and a class

rototype i , we use a weighted average of the histogram distances

er patch, i.e. 

 i,m 

= 

K ∑ 

k =1 

w k D i,k,m 

, (11)

ecalling that K = 64(N + 1) is the total number of oriented

atches, and w k are the corresponding weights. It is important to

ote that the average of χ2 histogram distances was also used

y Zelnik-Manor and Irani [47] to compare and cluster temporal

vents within long continuous video sequences. However, each his-

ogram comparison in their approach is related to temporal fea-

ures computed at different scales, while our histograms relate to

ifferent spatial regions of the image. 

Finally, the winning class i ∗m 

for test sample m is assigned based

n the minimum distance, i.e. 

 

∗
m 

= argmin 

i 

{ d i,m 

} . (12) 

To define the weights w k , we first note that some patches on

he face provide more information than others [39] . We then ran-

omly split the training data (CK+ dataset) into two disjoint sets

1 and �2 , split in a subject independent manner (i.e. subjects in

ne set do not appear in the other). They have approximately the

ame size (might not be exactly equal due to the number of sub-

ects and samples per subject), and �1 is used to build the class

rototypes Av i, k , according to Eq. (9) . For each training sample m

f the second set �2 , for which the class label c m 

∈ { 1 , . . . , I} is

nown (here, I = 6 for the problem without the neutral expression,

nd I = 7 when the neutral expression is used), we compute the

istance to the class prototypes at each patch according to Eq. (10) .

For relevant regions, D i,k,m 

should produce low average values

or the correct class (i.e. when c m 

= i ), and higher values for the

emaining classes ( c m 

	 = i ). Hence, the normalized error for the cor-

ect class label at each patch k , given by 

k = 

∑ 

m ∈ �2 

D c m ,k,m ∑ I 
i =1 D i,k,m 

, (13) 

ould produce the ideal value zero for relevant blocks, and larger

alues for non-discriminative blocks. To obtain the weight w k of

ach patch, we choose a monotonically decreasing function (w.r.t.
Please cite this article as: E.A. Silva Cruz et al., Facial expression recog
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k ) and normalize the values, so that 
∑ 

w k = 1 . More precisely, the

eights are given by 

 k = 

1 ∑ K 
k =1 e 

−αεk 

e −αεk , (14) 

here α controls the decay of the exponential function (set ex-

erimentally to 1). Note that this mapping is quite similar to the

oftmax function, with the inclusion of the decreasing monotonic-

ty. 

Assuming that the faces are mostly in a frontal pose, they can

e considered symmetric w.r.t. the central vertical axis, so that the

eights w k are also symmetrized by averaging the original weights

ith a their horizontally flipped version. Fig. 2 shows a visual rep-

esentation of the final weights in the three spatial orientations

n ∈ {0,2 π /3,4 π /3}, where brighter patches carry more weight. As

an be observed, regions around the mouth and the eyes are more

mportant, as expected. On the other hand, regions on the bound-

ry present mostly low weights, which is again expected since they

end to also comprise background pixels when the face is cropped.

. Experimental results 

This section shows the results obtained with the proposed ap-

roach, as well as comparisons with other state-of-the-art meth-

ds. It is worth noticing that comparisons with other FER meth-

ds is not an easy task, since each approach uses a different set

f databases and/or validation strategies [48] . In this work, most

f the results will be performed using the extended Cohn–Kanade

CK+) database [27] , since it is the most popular among FER meth-

ds. Also, most FER techniques that use a subject-independent (SI)

alidation methodology, which is better for inferring the general-

zation of the classifier than subject-dependent (SD) ones, show

heir results for the CK+ database. Nevertheless, we also evalu-

te the MMI database [33] and a cross-database experiment using

he KDEF (Karolinska Directed Emotional Faces) database [28] . In

he experiments, we tackled the 6- and 7-expression classification

roblems and computed all results of the proposed method us-

ng a subject-independent 10-folded cross-validation. When over-

ll results are reported, they are computed as the average of the

er-class accuracies and not the average accuracy of all samples,

hich avoids biasing toward expressions with more samples in the

atabases. Although TPOEM explores more than one frame to clas-

ify a given sample, tests were performed using a moving temporal

indow, so that the accuracy was computed for each frame. 

Regarding calculation costs, there are stages whose calculation

osts are fixed, other stages whose calculation costs are almost

onstant, and yet another set of stages whose costs depend on the

odification complexity. The fixed costs relate to frame grabbing,

ace detection and illumination correction. Mapping and classifica-

ion have little dependency on the used parameters: mapping only

equires μs time per code, and since the code length was adjusted

o be “close to” 256 regardless the used parameters, the classifi-

ation complexity does not change significantly. Since the coding

cheme presented in Section 3.2 is based on hierarchical clustering,

he number of clusters is reduced (typically by more than one) at

ach iteration. The target number of clusters is set as input in the
nition using temporal POEM features, Pattern Recognition Letters 
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Table 1 

Classification accuracy (in %) for our final method (TPOEM) and competitive ap- 

proaches using the CK+ database. 

Number of expressions 6-class 7-class SD/SI Partition 

SPTS + CAPP [27] 83.15 – N.A. N.A. 

Psycho-Visual [17] 95.3 – N.A. 2 to 10 folds 

Feature tracking [22] 87.43 – SI LSO 

Sparse Representation FER [21] 90.47 – SI LOSO 

Features of Salient Patches [11] 94.09 – SD 10 folds 

LDN 

G 
1 . 0 , 1 . 3 , 1 . 6 [35] 89.30 – SI 10 folds 

CNN-based [25] 91.46 – SI 8 folds 

CNN-based ( C classE ) [24] 96.76 95.79 SI 8 folds 

Collaborative [20] 96.12 SI LOSO 

POEM 95.02 90.27 

VPOEM 5,5,16,3 96.83 91.58 SI 10 folds 

TPOEM 5,5,16,1 96.87 91.80 SI 10 folds 

TPOEM 5,5,16,5 97.39 92.91 SI 10 folds 

The bold values correspond to the highest classification rates for 6 and 7 classes 

including our methodology and the benchmark found in the state of the art. 
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procedure and used as a stopping criterion, and the actual number

of cluster N b returned by the procedure might be a little smaller. 

The proposed method was implemented in Python, and tests

were performed using a laptop computer with an Intel Core i7-

4700 HQ, 2.4 GHz processor, 8GB RAM memory. The fixed and al-

most fixed costs take roughly 110ms in average according to our

tests, so for T = 5 there are approximately 60ms left for codifica-

tion in order to achieve real time calculation (recalling that only

one out of five frames are processed). The average execution time

per frame for our default method, TPOEM 5,5,16,1 , was 26ms, allow-

ing real-time processing for videos acquired at 30 frames per sec-

ond. 

4.1. Parameter setting 

The computation of TPOEM requires a set of parameters,

namely L, W, P and N . It should be noticed that P (neighborhood

size) and N (number of orientations) impact the computation time

and code length. Larger codes tend to produce better accuracy, but

at a higher cost. Aiming to keep the complexity similar to other

methods based on LBP, such as [38,53] , we selected P = 5 neigh-

bors a single ( N = 1 ) gradient orientation (for the sake of compar-

ison, P = 8 and N = 3 were used for POEM in [44] ). The cell size

W has no impact the cost (since the accumulated magnitudes are

obtained using integral images), as well as the block size L . 

To set these two parameters, as well as the temporal offset T ,

we perform a 10-folded cross validation procedure using the CK+

dataset, and run it ten times for each set of parameters in order

to reduce the confidence interval. We evaluated the accuracy pro-

duced by changing each parameter separately, fixing the remain-

ing ones. Although better results could be obtained by minimiz-

ing a target function that depends on all tested parameters, such

approach would be computationally expensive (due to the cho-

sen protocol), and could also overfit the parameters to training

database (CK+). Some parameters are dependent on scale, namely

L and T , which are scaled by resolution and FPS respectively. This

was addressed by keeping a fixed size of 128 × 128 pixels for the

detected face and proportionally scaling T if the FPS was different

than 30. 

As in [44] , which was focused on FR, we concluded that vary-

ing the block size (except for very small or very large values) did

not have significant impact on the accuracy, and used L = 16 as a

default value (in fact, the average accuracies varied about 2% for

L ∈ [10,20]). Regarding variable W , our experiments indicated that

the accuracy rapidly decreases as W increases. This is expected be-

cause W defines a local region, so an increase in W reduces the

characterization of local features which are important for the def-

inition of the facial expressions. We selected W = 3 as our default

value. 

We varied the temporal offset T for estimating the derivatives,

and results showed significant difference with α = 0 . 05 for the in-

terval T < 4 and T > 10 (by using α = 0 . 1 , the statistical difference

interval increased to T < 5 and T > 9). Within the range T ∈ {5,6,7,8},

we chose T = 5 as our default parameter, since the yields the

lowest lag (150ms for video sequences acquired at 30 FPS). Fi-

nally, uniform and rotational codification are included in the cod-

ing scheme, leading to a final TPOEM histogram with 177 bins. This

set of parameters was fixed for all experiments shown in the re-

maining of the paper, unless explicitly mentioned otherwise. 3 
3 To obtain this value, we evaluated the confusion matrix for the “modified 7- 

expression” problem (six basic emotions + contempt) from the original paper, and 

considered correct all misclassifications of any expression as contempt. Hence, it 

represents is a best-case scenario. 

t  

F  

t  

F  

f  

t  
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.2. Results and benchmarking 

The default TPOEM scheme is given by TPOEM 5,5,16,1 , obtained

ased on a compromise between accuracy and running time (it

uns at 30FPS), as mentioned before. Table 1 contains the accu-

acy results for our default TPOEM method, as well as a compar-

son with other competitive approaches for the CK+ dataset [27] ,

hich is an extended version of the CK dataset with more sam-

les and revised labels (labels in CK were not validated, so several

equences were not actual valid representation of the labeled ex-

ression). 

The results were extracted from the respective papers, and in

ome of them, SI validation methodology was used (i.e. subjects

n the test set were not used to train the model, as in our valida-

ion scheme), while in others it is SD (i.e. the same subject could

e both in the training and test sets), or even unclear (marked as

.A. in the table). As noted by different authors [21,24,40,46] , and

lso as explored later in this work, the same classifier tends to pro-

uce lower accuracy rates when SI validation is performed in com-

arison to SD. For instance, [46] reported an accuracy drop from

9.40% to 88.90% just by changing the validation strategy from SD

o SI. In fact, SI validation provides a better measure of the gener-

lization capabilities of a given classifier, and SD results might be

iewed as upper bounds for the accuracy rates. 

Compared to these competitive approaches, TPOEM 5,5,16,1 

resents the best result (96.87%) among all methods for the 6-

xpression problem. It also presents the second best result (91.80%)

or the 7-expression problem, being inferior only to the recent

NN-based method proposed by Lopes et al. [24] , which includes

 set of pre-processing steps (spatial/intensity normalization and

ynthetic samples for training). In particular, our method is consid-

rably better than Lee et al. [21] , which has been designed to deal

ith person-independent recognition as stated by the authors. It

s also interesting to compare our results with Happy and Routray

11] , which uses LBP features computed at the location of fiducial

oints. This approach is similar to ours: we compute TPOEM codes

patially distributed along the face, but within a fixed geometric

rid instead of attaching them to fiducial points. We believe that

he gain achieved by using a better appearance model (TPOEM in-

tead of LBP) compensates the use of a coarser geometric model.

inally, Table 1 also shows that even better results can be ob-

ained with TPOEM, but at the cost of higher computational cost.

or instance, TPOEM 5,5,16,5 (using 5 orientations instead of only 1 in

he default TPOEM) runs at 25 FPS, while TPOEM 5,5,16,1 runs at 37

PS, enough to produce real time computation. This time includes

rame grabbing, face detection, parameter extraction and classifica-

ion, but the bulk of the work is done in the parameter extraction
nition using temporal POEM features, Pattern Recognition Letters 
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Table 2 

7-expression confusion matrix (%) using TPOEM 5,5,16,1 in CK + .7. 

Ang. Dis. Fea. Hap. Neu. Sad. Sur. 

Ang. 93.52 0.00 0.00 0.00 6.48 0.00 0.00 

Dis. 0.00 91.58 2.35 2.35 3.62 0.00 0.00 

Fea. 0.00 0.00 89.33 0.00 7.33 0.00 3.33 

Hap. 0.00 0.00 0.00 10 0.0 0 0.00 0.00 0.00 

Neu. 2.21 1.07 1.43 0.00 90.64 3.93 0.71 

Sad. 0.00 0.00 0.00 0.00 13.00 87.00 0.00 

Sur. 0.00 0.00 0.83 0.00 4.42 0.00 94.75 

The bold values are the diagonal of the confusion matrix (i.e. the correct 

classification per class). 

Table 3 

6-expression per-class classification accuracy (%) using our method (TPOEM 5,5,16,1 ) 

and competitive approaches for MMI database. 

Method Ang. Dis. Fea. Hap. Sad. Sur. Mean 

[45] 84.57 89.71 88.00 97.71 89.14 95.43 90.76 

[49] 91.43 91.43 82.29 92.57 92.57 98.86 91.52 

[50] 94.9 90.6 92.0 94.4 95.1 95.1 93.6 

[35] 10 0.0 0 95.45 95.45 90.63 10 0.0 0 89.47 95.17 

[21] 93.14 92.57 93.14 96.57 89.71 97.71 93.81 

[54] 50.28 79.83 67.14 82.91 60.28 88.51 71.49 

Our (SD) 89.52 93.03 91.67 99.00 93.21 97.71 94.02 

Our (SI) 88.44 92.27 91.36 98.75 93.53 97.63 93.66 

The bold values are the highest classification per class between the benchmark 

and our proposal. 
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Table 4 

Comparison of accuracy (%) of classi- 

fiers using TPOEM features (our and 

SVM-RBF) using SD and SI validation 

schemes. 

Database 

Method CK + MMI 

Our (SD) 96.92 94.02 

Our (SI) 96.87 93.66 

SVM-RBF (SD) 99.13 94.72 

SVM-RBF (SI) 90.67 90.57 

Table 5 

Accuracy (%) for the MMI database with a classifier trained using the CK+ 

database. 

Method Ang. Dis. Fea. Hap. Sad. Sur. Mean 

Our 82.4 83.1 79.3 95.6 81.9 92.2 85.8 

TPOEM + SVM 48.8 53.2 49.7 70.9 69.0 53.9 57.5 

[30] – – – – – – 55.6 

[50] – – – – – – 66.9 

[29] – – – – – – 56.0 
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tage. The difference is not considerable, on the other hand, and

ith better equipment or code optimization higher FPS can be ob-

ained with higher code complexity, but we deemed it unnecessary

iven the low classification rate gains for higher complexity than

POEM 5,5,16,1 . 

The full confusion matrix for 7-expression classification using

POEM 5,5,16,1 for CK+ is shown in Table 2 . The lowest per-class

ccuracy was 87% (Sadness), which was misclassified 13% of the

imes as neutral. It is also important to note that some authors

21,27,35,40] report their results using a “modified 7-expression”

roblem (six basic expressions plus Contempt instead of Neutral).

ur approach in such problem for the CK+ database achieved an

verall accuracy of 93.0%, whereas the results reported in Lucey et

l. [27] , Ramirez Rivera et al. [35] , Taner Eskil and Benli [40] and

ee et al. [21] were, respectively, 83.3%, 89.3%, 76.8% and 89.6%, re-

pectively. 

We also compared the results of TPOEM 5,5,16,1 for the 6-

xpression problem using the MMI database with competitive ap-

roaches 4 , as shown in Table 3 . Since these methods report their

esults for a SD methodology, we also evaluated our method us-

ng both SD and SI validation schemes. As can be observed, our

D mean accuracy was inferior only (and by a low margin) than

35] , but better than all the other methods. Also, our SI results

ere only slightly inferior to SD, which indicates good generaliza-

ion capabilities. It is important to note that the parameters used

n the TPOEM codification ( W, T, L and P ) were selected based on

he CK+. They could be optimized for MMI, but our goal here is to

how that a set of default parameters can achieve good results in

ifferent databases. 

To illustrate the potential difference between the results ob-

ained with SD and SI validation schemes for some classifiers,

e have also trained an SVM-RBF classifier (used successfully in

35] ) with TPOEM features. The results of this classifier (for the

-expression scenario) for CK+ and MMI using SD and SI valida-

ion schemes are shown in Table 4 , along with the corresponding

esults for the proposed classifier. SVM-RBF presented better accu-
4 Results for [45] and [49] were extracted from [21] . 

 

t  

a  
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acy in both databases using SD validation, but our method was

etter when using SI validation. These results indicate a possible

verfitting of the SVM-RBF classifier, and also that the proposed

lassifier seems to generalize better for new subjects in both testes

atabases. 

.3. Cross-dataset validation 

Another very important aspect concerning classifiers (particu-

arly in the context of FER) is to evaluate the performance of a clas-

ifier trained on one dataset and validated on another one (cross-

ataset validation), as noted in [21,22] . In this work, we also used

ur classifier trained with CK+ images and validated using different

atasets. 

The first cross-dataset validation uses the MMI database for

alidation purposed. For each labeled video in the MMI dataset,

ne frame was chosen as neutral stance and another frame was

rouped as the labeled expression. Since L and W parameters are

ependent on the size of the image, each detected face was re-

ized to 128 × 128 pixels, so to match the size of the images used

n the training stage. Table 5 shows the average cross-dataset vali-

ation results (using CK+ to train and MMI to validate) reported in

ulticlass-SVM approach presented by Zhang et al. [50] , the CNN-

ased method introduced by Lee et al. [20] , and the best combina-

ion of classifier and domain adaptation method reported in Miao

t al. [29] , as well as the per-class and average results produced by

ur method. As can be observed, the proposed approach presented

ery good cross-dataset generalization when compared to compet-

tive approaches. For the sake of illustration, we also added the

esults using TPOEM with a SVM-RBF classifier, as mentioned in

ection 4.2 . The results were much worse than the proposed clas-

ifier, which corroborates the overfitting hypothesis suggested by

able 4 . 

In fact, one of the main difficulties to obtain good cross-dataset

esults is the specific condition of the unknown dataset, such as il-

umination conditions, resolution, individual characteristics of each

ubject, etc. Classifiers that allow a very flexible decision boundary,

uch as SVM-RBF or neural networks (including CNNs and deep be-

ief), can actually lead to poor cross-dataset generalization even if

he intra-dataset SI validation results are good. 

Another experiment used the KDEF (Karolinska Directed Emo-

ional Faces) [28] database. Although KDEF is composed of still im-

ges, so that temporal information cannot be explored, it was cho-
nition using temporal POEM features, Pattern Recognition Letters 
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Table 6 

Accuracy (%) for the KDEF database using our classifier trained with the CK+ 

database and human evaluation. 

Ang. Dis. Fea. Hap. Neu. Sad. Sur. Mean 

POEM 59.2 79.2 50.0 97.5 97.5 50.0 81.7 73.6 

Human 78.8 72.2 43.0 92.6 62.6 76.7 77.1 71.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sen because it presents FER results inferred by human evaluators,

so that a human vs. machine comparison could be performed. We

used traditional POEM features in this experiment, more precisely,

we used POEM 8,16,3 with the proper re-training of the weights w k 

presented in Section 3.3 . 

Table 6 shows our per-class classification results, together with

the accuracy obtained by human observers reported by Lundqvist

et al. [28] . Results are worse than those obtained for CK+, as ex-

pected, but better than human evaluation for five out of seven

expressions (and also higher mean accuracy). In fact, KDEF is a

challenging database for which even human classification presents

large errors, as shown in Lundqvist et al. [28] . 

5. Conclusions 

In this work we presented a classification scheme for the prob-

lem of FER using the idea of dynamic texture representation in

[52] , namely TPOEM. TPOEM codifies the volumetric texture infor-

mation around a central pixel using spatial and temporal neighbors

using directional derivatives and accumulated edge magnitudes

along the temporal axis. To account for the increase in code length

introduced by using volumetric information (more neighbors), a

novel coding scheme was developed aiming to obtain shorter his-

tograms as feature vectors, and at the same time maintain dis-

crimination among volumetric textures. Finally, a simple (and fast)

adaptive weighting scheme was explored to combine the TPOEM-

based scores at each image patch, producing the final classification

result. 

The accuracy results using TPOEM features and our simple clas-

sifier were comparable to or better than existing algorithms, while

keeping computational demands low (when compared to LBP-

based methods). It is important to point out that the main results

in our work were produced using SI methodologies, which have

lower accuracy rates than using conventional 10-folded SD random

validation, and can better measure the generalization capability of

the classifier (with respect to subjects that were not present in the

training stage). In fact, we showed in Table 4 that a same classi-

fier might reach considerably higher accuracy rates when using SD

validation when compared do SI, which are misleading and do not

represent the actual performance of the classifier. 

Our cross-database experiments showed that our the pro-

posed classifier trained with the CK+ database generalizes well

for the MMI database, with higher accuracies than competitive

approaches. A similar experiment with the KDEF database using

POEM-based features indicated that the proposed classifier pre-

sented higher mean accuracy than human evaluation. 

As future work, we plan to further integrate the TPOEM fea-

tures with deep learning techniques, which can inherently learn

the spatial relationships between the image patches. We also plan

to investigate the use of temporal pyramids when computing volu-

metric textural information, since facial expressions might change

at different speeds. Finally, we intend to explore audiovisual FER,

by integrating audio into the classifier. 
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