

PÁGINA 1 DE 56

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

Análisis geoespacial para el diseño de distribución de gas natural, corregimiento de Berlín, vereda Juan Rodríguez Tona, Santander, 2024.

Proyecto de Investigación

Thomas Fernando Torres Mariño
C.C. 1098.817.395
Oscar Javier Vita González
C.C. 1101.203.439

UNIDADES TECNOLÓGICAS DE SANTANDER
Facultad de Ciencias Naturales e Ingenierías
Ingeniería en Topografía
Bucaramanga, 18/05/2025

PÁGINA 2 DE 56

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

Análisis geoespacial para el diseño de distribución de gas natural, corregimiento de Berlín, vereda Juan Rodríguez Tona, Santander, 2024.

Proyecto de Investigación

Thomas Fernando Torres Mariño
C.C. 1098.817.395
Oscar Javier Vita González
C.C. 1101.203.439

Trabajo de Grado para optar al título de

Ingeniero Topógrafo

DIRECTOR

M.Sc Clara Inés Torres Vásquez

Grupo de investigación en Medio Ambiente y Territorio - GRIMAT

UNIDADES TECNOLÓGICAS DE SANTANDER Facultad de Ciencias Naturales e Ingenierías Ingeniería en Topografía Bucaramanga, 18/05/2025

PÁGINA 3 DE 56

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

Nota de Aceptación

Aprobado en cumplimiento de los requisitos exigidos por Las Unidades Tecnológicas de Santander para optar al título de Ingeniero Topógrafo Según acta #12 del Comité de Proyectos de Grado Del 9-06-2025

> Docente evaluador: Ing. Germán Alberto Suárez Arias Docente directora: M.Sc Clara Inés Torres Vásquez

> > Ing. Germán Alberto Suárez Arias Firma del Evaluador

M.Sc Clara Inés Torres 🐼 quez

Firma del Director

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 4

DE 56

DEDICATORIA

El presente trabajo de grado quiero dedicárselo principalmente a mi padre Facundo Torres y a mi madre María Helena Mariño quienes me brindaron el apoyo necesario a lo largo de este proceso académico y han sido mi motivación para salir adelante y formarme como persona. Dedico a Dios este logro por hacer que todo sea posible, por guiarme en momentos claves de mi vida y por brindarme la sabiduría necesaria para sobrepasar todos los obstáculos que se me presentaron durante la carrera, a todos los profesores que hicieron parte de mi formación académica, que me brindaron una amistad y me compartieron todos los conocimientos necesarios para poder salir y enfrentar la vida como topógrafo.

THOMAS TORRES

En primera instancia quiero agradecer a mis padres y hermano, MIGUEL VICENTE VITA CHAPARRO, MARIELA GONZALEZ y MIGUEL ANDRES VITA GONZALEZ quienes han sido fuente de inspiración para salir adelante no solo en este proyecto académico, sino a lo largo de mi vida, a mi esposa PAOLA CAMELO por su contante apoyo y amor, a la ingeniera CLARA INES por su constante vocación en nuestro proceso académico manifestando siempre su interés en forjar grandes profesionales y a todos los docentes de la ingeniería en topografía. Sin embargo, quiero manifestar un agradecimiento especial a mi hijo JUAN MARTIN quien me ha demostrado que no importan las adversidades que la vida nos ponga por delante, siempre podremos salir adelante y con la frente en alto.

OSCAR VITA

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 5

DE 56

AGRADECIMIENTOS

Principalmente agradecemos a Dios por darnos la salud y sabiduría necesaria para poder llevar a cabo esta investigación hasta el final, a nuestra directora de proyecto M.Sc Clara Inés Torres Vásquez por acompañarnos en este proceso, por habernos guiado y compartido conocimientos necesarios para poder desarrollar el proyecto de investigación, también agradecemos a las unidades tecnológicas de Santander por permitirnos pertenecer a la institución y podernos formar académicamente y ser mejor personas y profesionales.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 6

DE 56

TABLA DE CONTENIDO

RESU	ESUMEN EJECUTIVO11				
INTRO	DDUCCIÓN	<u>12</u>			
<u>1.</u>	DESCRIPCIÓN DEL TRABAJO DE INVESTIGACIÓN	<u>13</u>			
1.1.	PLANTEAMIENTO DEL PROBLEMA	_			
1.2.	JUSTIFICACIÓN				
1.3.	OBJETIVOS				
1.3.1.	OBJETIVO GENERAL				
1.3.2.	OBJETIVOS ESPECÍFICOS				
1.4.	ESTADO DEL ARTE	17			
<u>2.</u>	MARCO REFERENCIAL	<u>22</u>			
·					
2.1.	MARCO ESPACIAL	22			
2.2.	MARCO TEÓRICO	23			
2.2.1.	GEOMORFOLOGÍA Y PLANIFICACIÓN TERRITORIAL	_			
2.2.2.	INFRAESTRUCTURA DE DISTRIBUCIÓN DE GAS DOMICILIARIO				
2.2.3.	APLICACIÓN DE LOS SIG EN PROYECTOS DE INFRAESTRUCTURA				
2.3.	MARCO LEGAL				
2.3.1.	DECRETO 968 DE 1940 - MINISTERIO DE MINAS Y ENERGÍA				
2.3.2.	LEY 99 DE 1993 - MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIA 24				
2.3.3.	LEY 143 DE 1994 - COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS – CREG				
2.3.4.	DECRETO 2119 DE 1992 - UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA – UPME	_			
2.4.	MARCO AMBIENTAL				
2.5.	MARCO CONCEPTUAL				
2.5.1.	Análisis Geoespacial:				
2.5.2.	ORTOFOTO				
2.5.3.	GAS NATURAL				
2.5.4. 2.5.5.	GEORREFERENCIACIÓN	_			
2.5.5.	DESARROLLO RURAL SOSTENIBLE	20			
<u>3.</u>	DISEÑO DE LA INVESTIGACIÓN	<u>29</u>			
<u>4.</u>	DESARROLLO DEL TRABAJO DE GRADO	<u>30</u>			

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

4.1	GENERALIDADES	37
4.1.1	INFRAESTRUCTURA DE DISTRIBUCIÓN PARA EL MU	NICIPIO38
4.1.2	CARACTERÍSTICAS DEL GAS	38
4.2	PROCEDIMIENTO GENERAL DE DISEÑO	30
4.2.1	CARTOGRAFÍA DEL PROYECTO	¡ERROR! MARCADOR NO DEFINIDO
4.2.2	ECUACIONES DE FLUJO DE GAS	
4.2.3	CONSUMO DE ENERGÍA POR VIVIENDA	
4.2.4	DISEÑO DE LA RED DE DISTRIBUCIÓN	41
<u>5.</u>	RESULTADOS	41
<u>6.</u>	CONCLUSIONES	52
<u>v.</u>	<u> </u>	
_		
<u>7.</u>	RECOMENDACIONES	53
<u>8.</u>	REFERENCIAS BIBLIOGRAFICAS	54

PÁGINA 8 DE 56

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

LISTA DE GRAFICOS

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

PÁGINA 9 DE 56

VERSIÓN: 2.0

LISTA DE ILUSTRACIONES

Ilustración 1 Ubicacion Geografica Vereda Juan Rodriguez, Municipo de	Tona,
Santander	22
Ilustración 2 - Orientacion de las fotografias	31
Ilustración 3 - Nube de puntos Densa	31
Ilustración 4 - Modelo Digital de Elevaciones	32
Ilustración 5 - Ortomosaico	33
Ilustración 6 - Ecuacion de Weymouth	34
Ilustración 7 - Diseño de infraestructura de Gas	49
Illustración 8 - Plano de Redes de Distribución	50

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 10

DE 56

LISTA DE TABLAS

Tabla 1 - Presiones de operación	34
Tabla 2 - Factor de demanda o simultaneidad	36
Tabla 3 - Conversion de consumo a unidades de energia	37
Tabla 4 - Composicion Tipica del Gas Natural en Colombia	39
Tabla 5 - Composicion Tipica – Propiedades	39
Tabla 6 - Especificaciones de Calidad del Gas Natural	40
Tabla 7 - Caudal para Infraestructura de Distribucion	44
Tabla 8 - Caudal y presión de la Infraestructura de Distribución por sección	de
Tubería	47

UTS Unidades De ha ha higher de Santande

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 11

DE 56

RESUMEN EJECUTIVO

Para el presente proyecto de grado se podrá observar el desarrollo de actividades

que se elaboraron en una investigación en el corregimiento Berlín, vereda juan

Rodríguez del municipio de Tona, Santander. El objetivo principal del proyecto es

analizar las características topográficas, geomorfológicas y riesgos de desastre en

la zona de estudio con herramientas SIG para lograr un diseño de infraestructura

seguro y eficiente para el transporte y distribución de gas.

Para poder desarrollar la investigación se eligió una metodología descriptiva la cual

se desarrolló en tres etapas en las que de manera detallada se explica como se

elaboro cada fase, como resultado final se logró digitalizar la información obteniendo

ortofotos de la zona de estudio y a través de AutoCAD trazar diseño optimo y seguro

para poder incorporar una red de distribución de gas en la zona.

Al finalizar el análisis de la información recolectada se pudo determinar que la mejor

alternativa para la cocción y calefacción de alimentos es realizar un sistema de

distribución de gas domiciliario usando tecnologías nuevas como la actualización

cartografía por medio de aviones no tripulados logrando de esta manera reducir el

margen de error y mitigar el riesgo de cualquier eventualidad adversa teniendo como

único objetivo la prestación futura de un servicio público de manera económica y

segura.

PALABRAS CLAVE. Gas, Geomorfológica, Análisis, Digitalizar, Ortofoto

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 12

DE 56

INTRODUCCIÓN

El gas Natural es una combinación de varios hidrocarburos gaseosos presentes en el subsuelo, constituyendo una fuente primordial de energía, similar al carbón y el petróleo. (Ecopetrol, 2014) Entre los servicios públicos indispensables, el Gas Domiciliario ofrece la oportunidad de cubrir algunas de las necesidades fundamentales del ser humano. En lo que respecta al plan de gas y al programa de masificación del gas, el gobierno nacional tiene como objetivo optimizar el uso de las reservas existentes; reemplazar energéticos ineficientes y costosos con una canasta energética más eficaz y acorde con los ingresos de la población, contribuyendo a la protección del medio ambiente mediante el uso de energéticos menos contaminantes (Universidad Autónoma de Bucaramanga Facultad de Ingenierías Físico-Mecánicas Especialización en Gerencia de Recursos Energéticos 1)

Se opto por emplear un método de tipo teórico para poder desarrollar esta investigación y poder hacer el análisis del territorio a través de ortofotos generadas por los autores para determinar el sector de la población en la vereda Juan Rodríguez que podrá ser beneficiada con gas domiciliario si se lleva a cabo la ejecución de la instalación red de distribución de gas que se obtuvo como resultado después de la digitalización en sistemas CAD.

Este proyecto se realiza con el fin de aportar información real y precisa a la entidad competente para que sea tomado en consideración, poderlo aplicar o profundizar mas en los diseños planteados.

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 13

DE 56

1. DESCRIPCIÓN DEL TRABAJO DE INVESTIGACIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

En la vereda Juan Rodríguez, ubicada en el municipio de Tona, departamento de Santander, la comunidad enfrenta serias dificultades relacionadas con el acceso al servicio público de gas domiciliario. Actualmente, los habitantes no cuentan con una red de distribución que les permita disponer de este recurso de manera continua y segura en sus hogares. Como consecuencia, deben trasladarse al sitio más cercano que es el corregimiento de Berlín, recorriendo largas distancias, para poder adquirir cilindros de gas como energético para la cocción y calefacción de alimentos, lo que representa un gasto adicional de tiempo y dinero, además de riesgos en el transporte y almacenamiento del combustible.

Esta situación no solo afecta la calidad de vida de los residentes, sino que también limita el desarrollo de actividades básicas como la preparación de alimentos y el posible crecimiento de pequeñas empresas que requieran del servicio. Además, genera condiciones de desigualdad en el acceso a servicios públicos esenciales, en comparación con zonas urbanas o rurales aledañas y mejor atendidas.

Frente a este contexto, surge la necesidad de realizar un análisis geoespacial detallado que permita identificar las características geomorfológicas del terreno de la vereda Juan Rodríguez, con el fin de diseñar una infraestructura eficiente y segura para la distribución de gas domiciliario. Este análisis técnico-geográfico permitirá tomar decisiones acertadas en la planificación del trazado de la red, teniendo en cuenta factores como pendientes, accesibilidad, tipos de suelo y posibles riesgos ambientales.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 14

DE 56

Abordar esta problemática es esencial para mejorar las condiciones de vida de la comunidad, garantizar el acceso equitativo a un servicio básico y promover el desarrollo sostenible de la región. Es por eso que surge la pregunta de ¿Cuál es el aporte que genera realizar un análisis geoespacial en el desarrollo de una red de distribución de gas a través de fotos georreferenciadas?

UTS Uniclodes Technologica de Santande

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 15

DE 56

1.2. JUSTIFICACIÓN

Los proyectos de implementación de gas domiciliario por redes se presentan como una alternativa más económica para la cocción y calefacción de alimentos en comparación con otras alternativas energéticas de los sectores, beneficiando a los usuarios en términos de costos y beneficios. Sin embargo, actualmente las empresas no cuentan con un procedimiento confiable y rápido para la elaboración de proyectos de implementación de gas domiciliario por redes debido al no uso de nuevas tecnologías, lo que dificulta la aprobación de proyectos de inversión por

parte del Estado con el fin de conectar a las familias necesitadas al servicio público.

El uso de cartografía digital obtenida por medio de aviones no tripulados (Drones) para elaborar un procedimiento confiable y rápido para el inventario de redes de distribución de gas domiciliario y su posterior georreferenciación en sistemas de información geográfica otorgaría a las empresas información precisa, veraz y real del estado y ubicación de la infraestructura a construir, permitiéndoles contar con presupuestos precisos y diseños confiables.

Es importante tener en cuenta que las Unidades Tecnológicas de Santander, a través del programa de Ingeniería Topográfica, se encuentra en constante evolución y cambio debido a los avances tecnológicos y la necesidad de obtener información de manera más rápida sin perder precisión ni veracidad. Esta propuesta asume dicha evolución con responsabilidad, ya que hoy en día los sistemas de información geográfica aparecen como una solución integral de la problemática.

La propuesta es relevante para las UTS porque alimenta la línea de investigación de Geomática y Gestión territorial del Grupo de Investigación en Medio Ambiente y Territorio (GRIMAT), lo cual refuerza la actividad investigativa del programa académico.

Unicides De natigios de Sentancie

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 16

DE 56

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Analizar las características topográficas, geomorfológicas y los riesgos de desastres

de la zona rural de la vereda Juan Rodríguez del corregimiento de Berlín, Tona,

Santander, utilizando tecnologías como drones, SIG y herramientas topográficas

con el fin de diseñar una infraestructura segura y eficiente para la distribución de

gas natural.

1.3.2. OBJETIVOS ESPECÍFICOS

1. Identificar las características geográficas de la zona rural de la vereda Juan

Rodríguez del Corregimiento de Berlín realizando un levantamiento topográfico

detallado mediante el uso de drones y equipos de topografía.

2. Desarrollar un análisis geoespacial utilizando SIG para la identificación de

elementos geomorfológicos y riesgos de desastres que puedan afectar la instalación

y operación del sistema de distribución de gas natural.

3. Diseñar una propuesta de trazado óptimo para la infraestructura de

distribución de gas natural, según al análisis geoespacial realizado, asegurando la

viabilidad técnica, el cumplimiento de la normativa de seguridad y medioambiental.

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 17

DE 56

1.4. ESTADO DEL ARTE

TITULO: PROPUESTA DE UN DISEÑO DE SISTEMA DE REDES DE DISTRIBUCIÓN DE GAS NATURAL DOMÉSTICO PARA LA VEREDA SAN ROQUE Y ZONAS ALEDAÑAS AL CAMPO CERRO GORDO, EN EL DEPARTAMENTO DEL NORTE DE SANTANDER

AUTOR: GABRIELA CORTÉS POMAR - MARÍA PAULA QUIMBAYO CASALLAS

AÑO DE PUBLICACIÓN: 2021

PALABRAS CLAVES: Gas Natural, Diseño, Distribución de gas, Transporte,

Demanda.

RESULTADO:

El gasoducto virtual es una solución efectiva para generar diseños de suministros de gas en poblaciones pequeñas, al adaptarse a las particularidades de infraestructura y demanda. El recorrido específico mencionado ilustra cómo se implementa esta técnica en un contexto particular, brindando una solución de transporte eficiente y optimizada para satisfacer las necesidades de la zona involucrando las tres etapas: compresión, transporte y descompresión.

CONCLUSION:

La implementación del gasoducto virtual y la red de distribución propuesta cumplen con las normativas del país y ofrecen la facilidad de acceso del gas natural a la población, lo cual mejora la calidad de vida de los habitantes y satisface la demanda existente en la zona. El gasoducto virtual proporciona una solución eficiente y segura para la distribución de gas natural. Además, la red de distribución propuesta, con una línea troncal de 90.31m y anillos de distribución y acometidas de diferentes longitudes y diámetros, asegura un suministro adecuado y equitativo en el centro poblado.

(CORTES POMAR & QUIMBAYO CASALLAS, 2021)

UTS Uniclodes Technologica de Santande

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 18

DE 56

TITULO: REDISEÑO DEL GASODUCTO ENTRE POPAYÁN Y PASTO CON EL

USO DE LAS HERRAMIENTAS ARCGIS Y PIPESIM

AUTOR: JULIANA OTÁLORA ORREGO - JUAN CARLOS TINOCO MUÑOZ

AÑO DE PUBLICACIÓN: 2016

PALABRAS CLAVES: Gasoducto Popayán Pasto, ArcGis, Pipesim.

OBJETIVO GENERAL: Rediseñar una línea de gasoducto entre Popayán y Pasto a partir de los Sistemas de Información Geográfica, con el uso de las herramientas

ArcGis y Pipesim.

RESULTADOS:

El uso de la herramienta automática para el rediseño del trazado del gasoducto brinda importantes beneficios. Además de reducir visiblemente el tiempo necesario para realizar el trazado, el enfoque de optimización de la herramienta permitió obtener ahorros significativos en la longitud total del gasoducto, lo cual se traduce

en ahorros de costos en términos de material utilizado.

CONCLUSIONES:

La implementación de la herramienta automática de trazado tiene el potencial de generar beneficios significativos en términos de reducción de longitud y tiempo de trazado. Sin embargo, también es importante tener en cuenta los desafíos adicionales que surgen, como el aumento de cruces por carreteras. Es fundamental encontrar un equilibrio adecuado entre la optimización de la longitud y la planificación segura del trazado.

planificación segura del trazado.

(OTALORA ORREGO & TINOCO, 2016)

APROBADO POR: Líder del Sistema Integrado de Gestión FECHA APROBACIÓN: Octubre de 2023

UTS Unidades Techningia de Sentand

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 19

DE 56

TITULO: PROPUESTA DE RUTA ÓPTIMA PARA EL TRAMO ZONA II, DEL DUCTO DE LA INFRAESTRUCTURA DE TRANSPORTE DE HIDROCARBUROS, EN EL DEPARTAMENTO DEL VALLE DEL CAUCA, UTILIZANDO TECNOLOGÍA

LIDAR Y ORTOFOTO MOSAICOS.

AUTOR: WILSON ENRIQUE GÓMEZ CUNCANCHON.

AÑO DE PUBLICACIÓN: 2020

PALABRAS CLAVES: Teledetección, sensores remotos, Lidar, modelos digitales de superficie (MDS), modelo digital del terreno (MDT), ortofotogafía, análisis

espacial, transporte de hidrocarburos.

OBJETIVOS GENERAL: Proponer la ruta óptima para el tramo zona II, del ducto que formará parte del trazado de la infraestructura de transporte de hidrocarburos, que conectará el pacífico colombiano con la red de transporte principal de gas natural existente en el país, situado en la zona del departamento del Valle del Cauca, utilizando análisis espacial mediante la utilización de tecnología LIDAR y ortofoto mosaicos.

RESULTADO:

la aplicación de una correcta depuración de la nube de puntos LIDAR, una metodología adecuada de posicionamiento espacial de datos y el uso de herramientas especializadas y personal capacitado en análisis espacial son elementos esenciales para obtener resultados precisos en la definición de modelos digitales de elevación y otros productos derivados. Estas prácticas garantizan la calidad de la información cartográfica y su vinculación con bases de datos alfanuméricos, lo que es fundamental en la planificación de proyectos como la infraestructura de transporte de hidrocarburos.

Uts Unitades Demailigion de Santainse

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 20

DE 56

CONCLUSION:

A través del procesamiento de datos y el análisis espacial, se pudo obtener información cartográfica precisa y productos necesarios para la planificación del tramo del ducto. El resultado final fue la definición de la ruta óptima que cumplió con los requisitos técnicos establecidos, brindando una base sólida para el desarrollo

del proyecto.

(GOMEZ CUNCANCHON, 2020)

TITULO: DISEÑO DE GASODUCTOS MEDIANTE EL USO DE HERRAMIENTAS

COMPUTACIONALES DE PROPOSITO GENERAL.

AUTOR: JAVIER GARCIA MOGOLLON.

AÑO DE PUBLICACIÓN: PERU, 2015.

OBJETIVOS GENERAL: Desarrollar un programa informático que permita ingresar

parámetros de un gasoducto y obtener una solución rápida en términos de

dimensionamiento, comportamiento hidráulico y estimado económico.

RESULTADO:

A partir de los resultados obtenidos se permite analizar el comportamiento anticipado de un gasoducto antes de su construcción, así como obtener una estimación aproximada de la inversión necesaria. Estos resultados son utilizados para establecer criterios que limitan las condiciones de trabajo, como el caudal máximo, y brindan una noción de la ingeniería conceptual del proyecto.

ELABORADO POR:

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 21

DE 56

CONCLUSION:

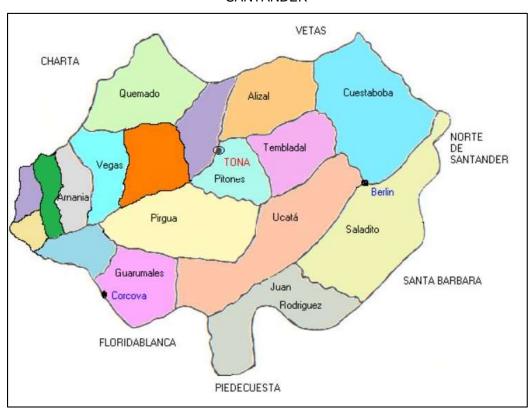
El programa desarrollado en este trabajo proporciona una herramienta específica para el diseño de tuberías de gas natural, logrando realizar cálculos precisos para el dimensionamiento (espesor y diámetro) de la tubería, así como analizar su comportamiento hidráulico y su factibilidad económica. Si bien el programa arroja resultados aproximados, está diseñado para facilitar la toma rápida de decisiones en el proceso de diseño del gasoducto y cabe destacar que su uso está restringido exclusivamente al transporte de gas natural por las normas aplicadas.

(GARCIA MOGOLLON, 2015)

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 22


DE 56

2. MARCO REFERENCIAL

2.1. Marco Espacial

El proyecto de investigación se desarrollará en la vereda juan Rodríguez que pertenece al municipio de tona, Santander, tiene cerca el corregimiento de Berlín que se encuentra ubicado a 64 km de la cabecera municipal de tona y de Bucaramanga a 63 km, el municipio de tona tiene una localización de 7°-15' de latitud norte y a 73°-03' de longitud oeste, tiene una extensión territorial de 342 km², cuenta con 16 veredas y 2 corregimientos y cuenta con variaciones de altura entre los 1.100 y 3.700 m.s.n.m.. (TONA, 2018)

Ilustración 1 UBICACION GEOGRAFICA VEREDA JUAN RODRIGUEZ, MUNICIPO DE TONA, SANTANDER

FUENTE: https://www.tona-santander.gov.co/municipio/mapas-y-territorios

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 23

DE 56

2.2. Marco Teórico

2.2.1. Geomorfología y planificación territorial

La geomorfología es considerada una ciencia en la cual se estudia las formas del relieve terrestre y también cuales son los procesos que las originan. Su análisis es crucial para proyectos de infraestructura, ya que las características del terreno como pendientes, elevaciones, estabilidad del suelo y escurrimientos; influyen directamente en la viabilidad técnica y económica de las obras en zonas rurales, el conocimiento geomorfológico permite diseñar sistemas de distribución que se adapten a las condiciones naturales del terreno, reduciendo costos y riesgos.

2.2.2. Infraestructura de distribución de gas domiciliario

La distribución de gas domiciliario consiste en el transporte del recurso desde centros de almacenamiento hasta los hogares mediante redes de tuberías subterráneas o superficiales. Este sistema debe cumplir con criterios técnicos y de seguridad establecidos por normativas nacionales, como el Reglamento Técnico de Instalaciones Internas de Gas Combustible en Colombia. En zonas rurales, el diseño de estas redes implica retos particulares por la dispersión de las viviendas, el tipo de terreno y las condiciones socioeconómicas de la población (UPME, 2019).

2.2.3. Aplicación de los SIG en proyectos de infraestructura

Los SIG han sido ampliamente utilizados en la planificación y gestión de infraestructuras públicas. Estas herramientas permiten simular escenarios, realizar análisis multicriterio y tomar decisiones basadas en datos precisos. En proyectos de distribución de gas, los SIG son útiles para determinar la mejor ruta para las redes, evaluar la cobertura potencial y estimar los costos de instalación y mantenimiento.

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 24

DE 56

2.3. Marco Legal

La Ley 142 de 1994 asignó al Ministerio de Minas y Energía las funciones de planificación del sector gas, en razón de lo cual le corresponde adoptar la política nacional en materia de exploración, explotación, transporte, refinación, procesamiento, beneficio, transformación y distribución de hidrocarburos. A continuación, se detallan las responsabilidades fundamentales de cada entidad relacionada con el gas en Colombia. (CONGRESO DE COLOMBIA, 1994)

2.3.1. Decreto 968 DE 1940 - Ministerio de Minas y Energía

Creado inicialmente como el ministerio de minas y el petróleo por el decreto 968 de 1940 como el ministerio de Minas y petróleos, en el año 1974 es modificado a de Ministerio de Minas y Energía por medio del decreto No 636 del 10 de abril. (REPUBLICA DE COLOMBIA, 1940) (https://repository.unab.edu.co/)

En lo que concierne a los servicios de utilidad pública, es responsabilidad de las entidades pertinentes, entre otras cosas, especificar las condiciones técnicas que deben satisfacer las construcciones, instrumentos y métodos empleados por las compañías de servicios públicos, siempre que la Comisión reguladora correspondiente determine, de manera general, lo que es imprescindible para asegurar la calidad del servicio sin interferir injustamente en la competencia.

2.3.2. Ley 99 DE 1993 - Ministerio de Ambiente, Vivienda y Desarrollo Territorial

Establecido por la Ley 99 de 1993, este organismo supervisa la administración del entorno y de los recursos naturales que pueden ser renovados. Su misión es fomentar una conexión respetuosa y armónica entre las personas y la naturaleza. Según lo estipulado en esta ley, se encarga de definir las directrices y normativas

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 25

DE 56

que regirán la restauración, conservación, protección, regulación, administración, uso y explotación de los recursos naturales y del medio ambiente del país, para garantizar un desarrollo que sea sostenible. (CONGRESO DE COLOMBIA, 1993)

2.3.3. Ley 143 DE 1994 - Comisión de Regulación de Energía y Gas - CREG

Creada por medio de las leyes 142 y 143 de 1994 Regula el ejercicio de las actividades de los sectores de energía y gas combustible para asegurar la disponibilidad de una oferta energética eficiente, propicia la competencia en tales sectores y propone la adopción de medidas necesarias que eviten abusos de posición dominante y busca la liberación de mercados hacia la libre competencia. La Comisión de Regulación de Energía y Gas tiene como misión regular los servicios públicos domiciliarios de energía eléctrica y gas combustible de manera técnica, independiente y transparente, fomentando el crecimiento continuo de estas áreas, controlando las empresas monopolistas, estimulando la competencia cuando sea factible y respondiendo de manera oportuna a las demandas de los consumidores y las compañías conforme a las normas establecidas en la legislación. (CONGRESO DE COLOMBIA, 1994)

2.3.4. Decreto 2119 DE 1992 - Unidad de Planeación Minero Energética – UPME

Establecida por el Decreto 2119 el 29 de diciembre de 1992, la Comisión Nacional de Energía se convirtió en la Unidad de Planeación Minero Energética, conocida como UPME, otorgándole el estatus de Organismo con características de Unidad Administrativa Especial. La Ley 143 de 1994 amplió lo relativo a su naturaleza legal, funciones, autonomía, operatividad, recursos financieros y régimen de personal. La misión de la UPME es llevar a cabo la planificación del desarrollo sostenible de los sectores de Minería y Energía en Colombia, contribuyendo a la formulación de políticas estatales y a la toma de decisiones que beneficien al país, mediante el análisis y procesamiento de información. Se encarga de preparar planes indicativos

UTS Unidades Techningia de Sentand

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 26

DE 56

para el sector energético, registra los proyectos que las empresas de servicios públicos someten a su consideración, y los organismos territoriales aprueban o

desaprueban los planes de gestión de las empresas correspondientes del sector.

(REPUBLICA DE COLOMBIA, 1992)

2.4. Marco Ambiental

El Decreto 1076 del 26 de mayo de 2015, expedido por el Gobierno Nacional

establece el tipo de actividades que requieren licencia ambiental:

ARTÍCULO 2.2.2.3.3.2 COMPETENCIA DE LA AUTORIDAD NACIONAL

LICENCIAS AMBIENTALES (ANLA): La Autoridad Nacional Ambientales – ANLA

concederá o rechazará licencias ambientales para los siguientes proyectos, obras

o actividades:

EN EL SECTOR HIDROCARBUROS:

d) Transporte y manejo de líquidos y gases hidrocarburos que se realicen fuera de

las áreas de extracción, insinuando la edificación y ensamblaje de infraestructura

para tuberías con diámetros de seis (6) pulgadas o más. (15.24 centímetros),

incluyendo estaciones bombeo y/o reducción de presión y la correspondiente

infraestructura de almacenamiento y control flujo; salvo actividades relacionadas

con la distribución gas de uso domiciliario, comercial o industrial.

En consecuencia, cabe señalar que el proyecto de Análisis geoespacial para el

diseño de distribución de gas natural, corregimiento de Berlín, vereda Juan

Rodríguez Tona, Santander, 2024., se caracteriza por manejar una presión máxima

de operación de sesenta (60) psig y un diámetro máximo de tubería igual a dos (2)

pulgadas, lo que determina la no necesidad de licencia ambiental. No obstante,

UTS Uniciades Tecnningios de Santancia

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 27

DE 56

dada la importancia de la elaboración de un plan de manejo ambiental que permita

prevenir, mitigar, corregir o compensar los impactos ambientales negativos y

fortalecer los positivos, que puedan derivarse como consecuencia de las actividades

de construcción y operación, el proyecto incluye un plan de manejo ambiental, el

cual propone un conjunto de acciones a realizar, en busca de la conservación de

las características propias del área a intervenir.

2.5. Marco Conceptual

2.5.1. Análisis Geoespacial:

Estudio y practica de métodos para la recopilación, almacenamiento, gestión,

visualización y análisis de datos geográficos. Permite identificar patrones,

tendencias y relaciones en datos relacionados con la ubicación geográfica,

ayudando a tomar mejores decisiones en diversas áreas como planificación urbana,

gestión ambiental y desarrollo de políticas públicas. (Pedada, 2023)

2.5.2. Ortofoto

Imagen aérea digital que ha sido ajustada geográficamente para eliminar

deformaciones, tales como la posición de la cámara o las variaciones en altura. Las

ortofotos mantienen una escala uniforme en toda su extensión y se pueden utilizar

como un mapa. (ESRI, 2023)

2.5.3. Gas Natural

Es una combinación de gases con alta capacidad térmica que se originó en el

interior del planeta a lo largo del tiempo. El metano es el elemento dominante de

esta mezcla. Los otros gases presentes en menores proporciones incluyen etanol,

dióxido de carbono (CO2) y vapor de agua, entre otros. (ENERGIA, 2019)

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 28

DE 56

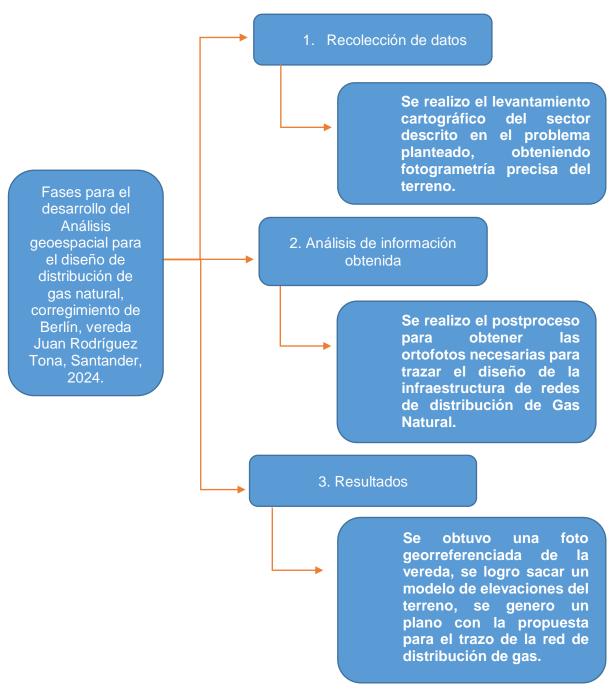
2.5.4. Georreferenciación

La georreferenciación implica el uso de coordenadas en un mapa para identificar una posición en el entorno con respecto a distintas entidades cartográficas. Cada elemento de una capa de mapa cuenta con un sitio geográfico y un área específica que facilita su colocación sobre la superficie terrestre o en sus cercanías. La habilidad para localizar con precisión las entidades geográficas es esencial en la elaboración de mapas y en los Sistemas de Información Geográfica.

2.5.5. Desarrollo rural sostenible

Es un enfoque que busca mejorar la calidad de vida en las zonas rurales mediante el acceso a servicios, la protección del medio ambiente y el fomento de actividades económicas sostenibles. La implementación de infraestructuras adecuadas, como redes de distribución de gas, contribuye directamente al desarrollo sostenible, al reducir la dependencia de combustibles contaminantes y mejorar la salud y el bienestar de la comunidad.

PÁGINA 29 DE 56


F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

3. DISEÑO DE LA INVESTIGACIÓN

Gráfico 3.1 - Metodología para el desarrollo de la practica

Fuente: Autor

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 30

DE 56

4. DESARROLLO DEL TRABAJO DE GRADO

4.1. RECOLECCION DE DATOS

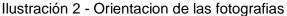
4.1.1. Cartografía del proyecto

Uno de los principales objetivos de este análisis fue obtener la fotogrametría actualizada del sector de trabajo por medio de uso de drones para generar ortomosaicos. Se utilizaron como fuentes de información las suministradas, entre otras por las siguientes instituciones: Instituto Geográfico Agustín Codazzi (IGAC), Gobernación de Santander y organismos municipales como la secretaria de Planeación para obtener cartografía base.

Esta fase es de vital importancia en el cumplimiento de los objetivos del proyecto. Consistió en la búsqueda y análisis de la cartografía disponible de la zona en estudio y a su vez actualizarla para obtener información precisa del sector de la problemática. Estas actualizaciones permiten identificar la infraestructura vial del municipio y los diferentes sectores que se van a intervenir, además de ser la base para realizar los diseños de los posibles trazados de la red de distribución.

4.1.2. Cartografía Actualizada

Por medio del uso de aeronaves no tripuladas se logró obtener fotografías precisas del sector y lograr así el proceso óptimo para el posterior diseño técnico de la infraestructura de las redes de distribución de gas de la vereda Juan Rodríguez. Una vez obtenidas las ortofotografías del sector definido, se procede a él postproceso de orientación de las mismas, teniendo en cuenta que las fotografías obtenidas con la aeronave vienen cargadas con información de posicionamiento, este proceso se usa con el fin de ubicar geoespacialmente el espacio de trabajo en el sistema de coordenadas de nuestra elección. (Ver ilustración 4.1)

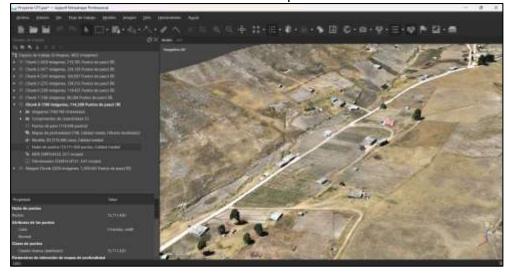



INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 31

DE 56



FUENTE - Autor

Luego de finalizar el proceso de orientación de las fotografías, procedemos al proceso de la creación de la Nube de Puntos Densa. Este proceso toma una cantidad de puntos base de cada fotografía según lo requerido por el usuario con el fin de obtener una representación tridimensional del terreno. (Ver ilustración 4.2)

Ilustración 3 - Nube de puntos Densa

FUENTE - Autor

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 32

DE 56

Posterior a la obtención de la nube de puntos densa de nuestro proyecto, procedemos a ejecutar el Modelo Digital de Elevaciones – MDE el cual no demostrara nuestra área de trabajo representando mediante una escala de colores las características y altimetría del terreno. (Ver ilustración 4.3).

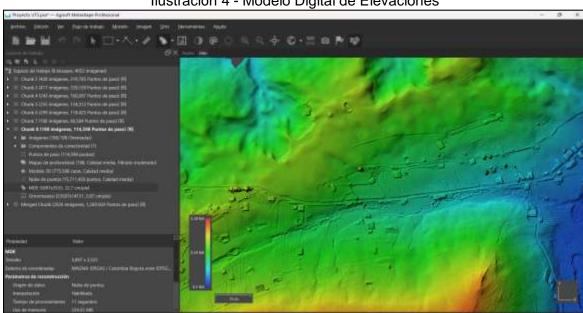
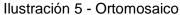


Ilustración 4 - Modelo Digital de Elevaciones

FUENTE - Autor.

Una vez obtengamos nuestro modelo digital de elevaciones, procedemos al proceso de elaboración de nuestro Ortomosaico, del cual podremos exportar un archivo de imagen con etiquetas (.TIFF) el cual contiene toda la información geoespacial de nuestro levantamiento (Ver ilustración 4.4).





F-DC-125 INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

PÁGINA 33 DE 56

VERSIÓN: 2.0

FUENTE - Autor

4.1.3 Parámetros para el Diseño y Calculo de Caudales de Gas

Existen varias ecuaciones de flujo que permiten predecir el comportamiento del gas a través de la red de distribución.

La diferencia básica de las ecuaciones existentes para flujo de gas en tuberías radica en el valor correspondiente al coeficiente de fricción. Para el diseño de las redes, en este caso se utilizó la Ecuación de Flujo de Weymouth, por lo que se comporta muy bien bajo las condiciones de presión y temperatura presentes en el sitio del proyecto; aunque también se realizó la simulación con las ecuaciones de Unwin, Spitzglass, Rix, Pole y Oliphant, obteniéndose datos similares.

La ecuación de Weymouth para el flujo de gas en tuberías, es la siguiente:

PÁGINA 34 DE 56

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

Ilustración 6 - Ecuacion de Weymouth

$$Q = 280*d^{2,667} \sqrt{\left[\frac{(P_1)^2 - (P_2)^2}{Sg*Lm} * \frac{520}{T}\right]}$$

FUENTE-Autor

Donde:

Q = Tasa de flujo, pies cúbicos por hora a condiciones normales

T = Temperatura absoluta, (°R)

P1 = Presión de entrada al sistema considerado, psia.

P2 = Presión de salida del sistema considerado, psia.

d = Diámetro interno de la tubería, pulgadas.

Sg = Gravedad especifica del gas (aire = 1,0)

Lm = Longitud de la tubería, millas

4.1.3.1 Definición de variables

Presión Máxima y Mínima de la Red

La máxima y mínima presión de operación del sistema de distribución depende del elemento a transportar por la misma, y el tipo de tubería a utilizar. Para el caso particular, el diseño contempló como combustible gas natural y el tipo de tubería es polietileno de media densidad – PE80.

Tabla 1 - Presiones de operación

GAS COMBUSTIBLE	PRESIÓN MÁXIMA	PRESIÓN MÍNIMA
INFRAESTRUCTURA DE DISTRIBUCION - GAS NATURAL	60 psig	10 psig*

FUENTE- Autor

*Nota: Depende de las características del Centro de Medición el difiere según el tipo de usuario (Residencial, Comercial, Oficial).

ELABORADO POR: Docencia

REVISADO POR: Sistema Integrado de Gestión APROBADO POR: Líder del Sistema Integrado de Gestión FECHA APROBACIÓN: Octubre de 2023

UTS Unitiades De notifique de Santande

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 35

DE 56

Temperatura Mínima y base

La temperatura mínima considerada en los cálculos de flujo de gas tenida en cuenta

en el diseño de la infraestructura de distribución parala zona rural de Juan

Rodríguez es de 15°C o 59°F. Cuando la temperatura ambiente aumenta, la presión

se incrementa en las redes, reduciéndose la caída de presión en las tuberías y

optimizando el flujo de gas por el sistema.

La Temperatura base corresponde a las condiciones base, referencia o estándar de

temperatura, es decir 60°F.

Gravedad especifica del gas

Se define como la relación entre el peso molecular de un gas cualquiera y el peso

molecular del aire, ambos a condiciones estándar (60° F, 14.7 psia). Para nuestro

caso el poder calorífico del gas de Cusiana es 1,114 psia.

Presión base

Corresponde a las condiciones base, referencia o estándar de presión es decir 14.7

psia.

Velocidad del Gas

La velocidad del gas afecta la capacidad del sistema, la cual puede variar con la

presión y el volumen de gas transportado. Un sistema de distribución de gas natural

no debe presentar una velocidad mayor a 120 ft/seg. o 36,58 m/s El exceso debe

evitarse, pues se puede producir lo siguiente:

✓ Ruidos o silbidos en la tubería que pueden irradiarse a las residencias

cercanas.

✓ Polvo, líquido u otros materiales pequeños pueden ser arrastrados por el

movimiento rápido del gas, produciendo abrasión en codos y tubería,

debido a las coaliciones que estos producen.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 36

DE 56

✓ Una alta velocidad indica que la tubería está operando cerca de su máxima capacidad, lo cual debe evitarse.

Eficiencia de flujo

Es un factor que permite establecer las limitaciones del sistema por variables que no incluye la ecuación, tales como material de la tubería y estado de las mismas. Dicho factor depende de la rugosidad interna de la tubería y tiene un valor máximo de 1. Para tubería de polietileno de media densidad y cuyo estado sea nueva el factor a utilizar es de 0,98.

Factor de Demanda

Para un conjunto de compradores o usuarios, se describe como la conexión entre el mayor requerimiento simultáneo de gas del conjunto y la suma total de la carga instalada. Este indicador de demanda varía para cada aparato a gas, considerándose como tal cualquier dispositivo que utilice gas como fuente de energía. Este Factor se hace menor a medida que aumenta el número de usuarios.

Nv FD Nv FD NvFD Nv FD NvFD Nv FD 0.64 0.51 0.45 11 21 0,55 31 41 0,48 60 2 8,0 12 0,63 22 0,54 32 0,51 42 0,47 70 0,43 3 0,78 13 0,62 23 0.54 33 0,5 43 0,47 80 0,42 4 0,76 14 0,61 24 0,53 34 0,5 44 0,47 90 0,41 5 0,74 15 0,6 25 0,53 0,5 45 0,47 100 0.4 200 0,38 6 0,72 16 0,59 26 0,53 36 0,49 46 0,47 7 0,36 0,7 17 0,58 27 0,52 37 0,49 47 0,46 300 8 0,68 18 0,57 28 0,52 38 0,49 48 0,46 400 0,33 0,66 19 0,56 29 0,52 0.48 49 0.46 500 0.3 10 0.65 20 0.48 0.46 0.55 0.51 50 1000 0,26

Tabla 2 - Factor de demanda o simultaneidad

FUENTE - Empresas Públicas de Medellín

4.1.4 CONSUMO DE ENERGÍA POR VIVIENDA

Para determinar el caudal de consumo por vivienda, se ha desarrollado el siguiente procedimiento:

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 37

DE 56

- ✓ Se estableció que el consumo mensual de gas natural por vivienda en la vereda Juan Rodríguez zona rural del municipio de Tona corresponde a 15 m³ Gas Natural/ mes.
- ✓ Se convirtió el consumo de m³ de GN/mes a ft³/hora.
- ✓ Se multiplicó este consumo por el poder calorífico del Gas Natural en BTU/ft³ para obtener el consumo en BTU/hora.

La Tabla 3 muestra el resumen de estas conversiones:

Tabla 3 - Conversion de consumo a unidades de energia

18,000	consumo m3/mes
0,600	consumo m3/día
0,171	consumo m3/hora
6.158	consumo BTU/hora

FUENTE - Autor

El consumo por unidad de vivienda es en promedio 0.171 M3/Hora

4.2 ANALISIS DE LA INFORMACION OBTENIDA

GENERALIDADES

Una vez elaborado la cartografía de la zona se procede a realizar el análisis geoespacial para definir la mejor alternativa de suministro de gas natural por redes para la vereda Juan Rodríguez del municipio de Tona. Se estableció como mejor opción realizar el transporte del gas natural por redes a través de la instalación y canalización de tubería de Polietileno de media densidad (PE80). El proyecto consiste en el análisis y diseño de la red de distribución de gas natural domiciliario en cada uno de los sectores.

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 38

DE 56

La red se instalará en tubería de polietileno, cuyos diámetros previstos serán de dos (2"), una (1") y tres cuartos (3/4") de pulgada y operará a una presión máxima de 60 psig; el gas a suministrar es proveniente del gasoducto Gibraltar – Bucaramanga, Operado por Transportadora de Gas Internacional (PROMIORIENTE).

4.2.1 Infraestructura de distribución para el municipio.

El sistema de distribución de gas natural domiciliario por redes involucra los siguientes componentes principales:

- ✓ Fotogrametría actualizada del sector de trabajo.
- ✓ Red troncal veredal para la zona rural de la Vereda Juan Rodríguez.
- ✓ Redes de distribución para los usuarios potenciales del proyecto.

4.2.2 Características del gas

La composición del gas natural en Colombia varía para cada uno de los campos productores. La composición del gas es un dato básico para determinar otras propiedades, tales como la gravedad específica, peso molecular, poder calorífico y viscosidad. Cualquier error generado al calcular una de estas propiedades puede reflejarse en los cálculos de caída de presión y en problemas operacionales en la prestación del servicio. Además, la determinación correcta de la composición del gas es fundamental para el cálculo preciso de su poder calorífico, parámetro que le da el valor comercial al gas. La Tabla 4 y 5 detalla algunas de las composiciones del gas natural que se produce en el país.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

Tabla 4 - Composicion Tipica del Gas Natural en Colombia

PONENTE	FORMULA	GUAJIRA	MONTAÑUELO	DINA	CUSIANA	APIAY	MEZCLA	MORICHAL	GUEPAJE
HIDROGENO	H2								
HELIO	He								
MONOX DO DE CARBONO	CO								
NITROGENO	N2	1,589	0,548	0,766	0,35	0,64	0,43	0,44	2,26
OXIGEND	02	0,012	0,008	0,029					
SULFU R O DE HIDROGENO	H2S								
ARGON	Ar								
DIOXIDO DE CARBONO	CO2	0,041	2,459	0,017	4,74	2,77	4,23	3,92	0,0693
AIRE									
METAN	CH4	98,005	96,133	87,718	78,86	77,91	78,54	75,59	96,79
ETANO	CH6	0,258	0,691	6,202	10,05	14,79	11,34	10,38	0,6
PROPA N O	CH8	0,052	0,029	2,763	4,25	3,11	3,93	5,37	0,13
ISO- BUTANO	CH10	0,016	0,044	0,542	0,66	0,32	0,56	1,14	0,04
N- BUTANO	CH10	0,008	0,012	0,91	0,74	0,33	0,63	1,49	0,1
ISO- PENTANO	CH12	0,006	0,009	0,316	0,17	0,06	0,15	0,57	0,001
N- PENTANO	CH12	0,002	0,004	0,233	0,11	0,04	0,09	0,41	0,02
N- HEXANO	CH14	0,004	0,008	0,294	0,05	0,03		0,36	0,009
N- HEPTANO	CH16	0,000	0,000	0,000	0,02			0,12	0,01
N- OCT NO	CH18	0,006	0,055	0,21				0,13	0,005
N- NONANO	CH20							0,11	0,003
N- DECANO	CH22								

FUENTE - Autor

Tabla 5 - Composicion Tipica - Propiedades

UNIDAD	GUAJIRA	MONTAÑUELO	DINA	CUSIANA	APIAY	MEZOLA	MADRICHAL	GUEPAJE
BTUPC	996,32	969,06	1161,43	1138	1150	1139	1240	996,3
PPM	ND	0	ND	2	2	3	6	ND
PPM	ND	ND	ND	ND	ND	ND	ND	ND
%	0,04	2,46	0,02	4,74	2,77	4,23	3,92	0,07
%	1,59	0,55	0,77	0,35	0,64	0,43	0,44	2,26
%	0,01	0,1	0,33					
%	1,64	3,02	0,81	5,09	3,41	4,66	4,36	2,33
LB/MPCS	ND	23	ND	2,9	0,6	2,8	9,3	ND
F	ND	90	ND	102	90	108	92	ND
GRANO/ 1000PC	ND	ND	ND	ND	ND	ND	ND	ND

FUENTE - Autor

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 40

DE 56

El gas natural a ser transportado por gasoducto debe cumplir con ciertas especificaciones de calidad establecidas en el Reglamento Único de Transporte (Resolución RUT 071 de 1999). En la tabla 6 se presentan los estándares de calidad establecidos en el RUT:

Tabla 6 - Especificaciones de Calidad del Gas Natural

ESPECIFICACIONES	Sistema Internacional	Sistema Inglés
Máximo poder calorífico bruto (GHV) (Nota 1)	42.8 MJ/m3	1.150 BTU/ft3
Mínimo poder calorífico bruto (GHV) (Nota 1)	35.4 MJ/m3	950 BTU/ft3
Contenido líquido (Nota 2)	Libre de líquidos	Libre de líquidos
Contenido total de H2S máximo	6 mg/m3	0.25 grano/100PCS
Contenido total de azufre máximo	23 mg/m3	1.0 grano/100PCS
Contenido CO2, máximo en % volumen	2%	2%
Contenido de N2, máximo en % volumen	3	3
Contenido de inertes máximo en % volumen (Nota 3)	5%	5%
Contenido de oxígeno máximo en % volumen	0.1%	0.1%
Contenido de agua máximo	97 mg/m3	6.0 Lb/MPCS
Temperatura de entrega máximo	49 °C	120°F
Temperatura de entrega mínimo	4.5 °C	40 °F
Contenido máximo de polvos y material en suspensión (Nota 4)	1.6 mg/m³	0.7 grano/1000 pc

FUENTE - Autor

Nota 1: Todas las cifras mencionadas en relación a metro cúbico o pie cúbico de gas se basan en Condiciones Estándar.

Nota 2: El Gas Natural tiene que suministrarse en una calidad que impida la formación de líquido, bajo las condiciones críticas de funcionamiento del Sistema de Transporte. La medición de la calidad se realizará usando el "Cricondentherm", que se establecerá para cada situación particular, según el propósito y las áreas en las que se emplee el gas.

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 41

DE 56

5. RESULTADOS

5.1. Diseño de la red de distribución

5.1.1. Actualización del plano con el detalle de las veredas.

Se registró fotográficamente la morfología del sector caracterizando de forma general la estructura física y el sector aledaño, analizándose las vías rurales vehiculares, como peatonales (pendiente del terreno, ancho y alto de vías, pasos especiales, etc), así como los cruces de ríos, entre otros. Además, se tomó en cuenta en el municipio:

- Determinación aproximada del número de viviendas a construir en los lotes y definir las posibles áreas de expansión rural.
- Reconocimiento de la red hidrográfica, estableciendo los puntos críticos o cruces de la línea de distribución sobre pasos especiales (áreas sensibles o de tratamiento especial) y cuerpos de agua (como cañadas, quebradas y ríos).
- Revisión y redefinición del trazado preliminar de la infraestructura de distribución, las poliválvulas y válvulas de seccionamiento.
- Revisión del trazado preliminar de la infraestructura de distribución para determinar su longitud real y el impacto que ocasiona sobre el medio (remoción de cobertura vegetal, obstaculización por obras civiles, etc).
- Reconocimiento geológico de campo. Análisis de la estratigrafía (formaciones geológicas), tectónica, geomorfología y principalmente los grados de estabilidad, buscando evidencias que pudieran sugerir inconvenientes durante las etapas de construcción y operación.
- Identificación de la posible presencia de reservas forestales, áreas sensibles de valor ambiental y construcciones catalogadas como patrimonio histórico y cultural.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, **EMPRENDIMIENTO Y SEMINARIO**

VERSIÓN: 2.0

PÁGINA 42

DE 56

5.1.2. Trazado de los anillos

Como los anillos están encargados de proporcionar gas a los usuarios directamente, deben circundar cada manzana completamente en este caso deberán conectar las

viviendas en cada uno de los ramales en la vereda.

Estas variables han determinado que los anillos de distribución se hayan diseñado

en tubería de polietileno de media densidad de ¾" de diámetro. Por experiencia y

por criterio común de las distribuidoras, la unificación de un diámetro de tubería,

facilita entre otros las siguientes actividades:

Dimensionamiento con proyección a futuro con margen para posibles

ampliaciones y vinculación de usuarios nuevos de acuerdo a la tasa de

crecimiento poblacional de la región.

La construcción de la red de gas

Un mayor control de los inventarios de tubería, teniendo en cuenta que son

varios municipios atendidos por el mismo personal y equipo.

Facilidad al momento de adelantar reparaciones, control de fugas y atención de

emergencias.

Estas variables han determinado que los anillos de distribución deben diseñarse en

tubería de polietileno de media densidad de 3/4" de diámetro.

La simulación de las diferentes alternativas nos permite obtener un diseño óptimo

en cuanto a diámetros y longitudes de tubería.

5.1.3. Simulación Del Diseño

Por medio del Software PIPEFLOW, y una vez determinada la demanda de gas y

las longitudes en el trazado de las troncales se procede a simular el comportamiento

del gas en la red determinándose de esta forma el diseño óptimo del sistema.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 43

DE 56

Simulación del diseño de la Infraestructura de Distribución.

La Infraestructura de distribución para los sectores incluidos en el proyecto corresponde a la tubería troncal a extender a partir de la estación de regulación o City Gate que depende del gasoducto de T.G.I. hasta cubrir las redes en su totalidad y la red de distribución en tubería de polietileno de 2", 1" y ¾". La Infraestructura de Distribución llevara el gas natural, garantizando el caudal y la presión requerida para la prestación del servicio.

El caudal por nodo y las longitudes de tubería se observan en la tabla 7. Estos caudales son introducidos al simulador para calcular la caída de presión en cada uno de los nodos. La determinación del caudal por nodo tuvo en cuenta la suma de las viviendas actuales y el crecimiento proyectado a 20 años al igual que el consumo comercial y oficial total de cada una de las veredas el consumo industrial es inexistente.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

Tabla 7 - Caudal para Infraestructura de Distribucion

		SIMUL	ACIÓN ZON	IA JUAN RO	DDRIGUEZ	ı	
Nodo	Viviendas a 2025	Crecimiento a 20 años	Qviv (BTU/h)	FD	Qnodo (BTU/h)	Qnodo (MMPCD)	Qnodo (m3/h)
N2	-	-	6.158		-	0,000000	0,000
N3	-	-	6.158		-	0,000000	0,000
N4	-	-	6.158		-	0,000000	0,000
N5	-	-	6.158		-	0,000000	0,000
N6	5	7	6.158	0,700	31.401	0,000741	0,874
N7	5	7	6.158	0,700	31.401	0,000741	0,874
N8	5	7	6.158	0,700	31.401	0,000741	0,874
N9	5	7	6.158	0,700	31.401	0,000741	0,874
N10	5	7	6.158	0,700	31.401	0,000741	0,874
N11	5	7	6.158	0,700	31.401	0,000741	0,874
N12	5	7	6.158	0,700	31.401	0,000741	0,874
N13	5	7	6.158	0,700	31.401	0,000741	0,874
N14	5	7	6.158	0,700	31.401	0,000741	0,874
N15	5	7	6.158	0,700	31.401	0,000741	0,874
N16	5	7	6.158	0,700	31.401	0,000741	0,874
N17	5	7	6.158	0,700	31.401	0,000741	0,874
N18	5	7	6.158	0,700	31.401	0,000741	0,874
N19	5	7	6.158	0,700	31.401	0,000741	0,874
N20	5	7	6.158	0,700	31.401	0,000741	0,874
N21	5	7	6.158	0,700	31.401	0,000741	0,874
N22	5	7	6.158	0,700	31.401	0,000741	0,874
N23	5	7	6.158	0,700	31.401	0,000741	0,874
N24	5	7	6.158	0,700	31.401	0,000741	0,874
N25	5	7	6.158	0,700	31.401	0,000741	0,874
N26	5	7	6.158	0,700	31.401	0,000741	0,874
N27	5	7	6.158	0,700	31.401	0,000741	0,874
N28	5	7	6.158	0,700	31.401	0,000741	0,874
N29	10	15	6.158	0,600	53.830	0,001270	1,498
N30	10	15	6.158	0,600	53.830	0,001270	1,498
N31	10	15	6.158	0,600	53.830	0,001270	1,498
N32	10	15	6.158	0,600	53.830	0,001270	1,498
N33	10	15	6.158	0.600	53.830	0,001270	1,498
N34	10	15	6.158	0,600	53.830	0,001270	1,498
N35	10	15	6.158	0,600	53.830	0,001270	1,498
N36	10	15	6.158	0,600	53.830	0,001270	1,498
N37	10	15	6.158	0,600	53.830	0,001270	1,498
N38	10	15	6.158	0,600	53.830	0,001270	1,498
N39	50	73	6.158	0,430	192.890	0,004551	5,369
N40	100	146	6.158	0,380	340.922	0,008043	9,490
N41	100	146	6.158	0,380	340.922	0,008043	9,490
N42	15	22	6.158	0,540	72.670	0,001715	2,023
N43	15	22	6.158	0,540	72.670	0,001715	2,023
N44	15	22	6.158	0,540	72.670	0,001715	2,023
N45	15	22	6.158	0,540	72.670	0,001715	2,023
N46	10	15	6.158	0,600	53.830	0,001713	1,498
N47	10	15	6.158	0,600	53.830	0,001270	1,498
N48	10	15	6.158	0,600	53.830	0,001270	1,498
N49	10	15	6.158	0,600	53.830	0,001270	1,498

PÁGINA 45 **DE 56**

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

NEO	10	4.5	C 450	0.000	F2 020	0.001270	1 400
N50	10	15	6.158	0,600	53.830	0,001270	1,498
N51	10	15	6.158	0,600	53.830	0,001270	1,498
N52	10	15	6.158	0,600	53.830	0,001270	1,498
N53	10	15	6.158	0,600	53.830	0,001270	1,498
N54	10	15	6.158	0,600	53.830	0,001270	1,498
N55	10	15	6.158	0,600	53.830	0,001270	1,498
N56	10	15	6.158	0,600	53.830	0,001270	1,498
N57	8	12	6.158	0,630	45.217	0,001067	1,259
N58	8	12	6.158	0,630	45.217	0,001067	1,259
N59	8	12	6.158	0,630	45.217	0,001067	1,259
N60	10	15	6.158	0,600	53.830	0,001270	1,498
N61	10	15	6.158	0,600	53.830	0,001270	1,498
N62	10	15	6.158	0,600	53.830	0,001270	1,498
N63	10	15	6.158	0,600	53.830	0,001270	1,498
N64	15	22	6.158	0,540	72.670	0,001715	2,023
N65	15	22	6.158	0,540	72.670	0,001715	2,023
N66	15	22	6.158	0,540	72.670	0,001715	2,023
N67	15	22	6.158	0,540	72.670	0,001715	2,023
N68	15	22	6.158	0,540	72.670	0,001715	2,023
N69	15	22	6.158	0,540	72.670	0,001715	2,023
N70	15	22	6.158	0,540	72.670	0,001715	2,023
N71	15	22	6.158	0,540	72.670	0,001715	2,023
N72	15	22	6.158	0,540	72.670	0,001715	2,023
N73	15	22	6.158	0,540	72.670	0,001715	2,023
N74	15	22	6.158	0,540	72.670	0,001715	2,023
N75	15	22	6.158	0,540	72.670	0,001715	2,023
N76	15	22	6.158	0,540	72.670	0,001715	2,023
N77	15	22	6.158	0,540	72.670	0,001715	2,023
N78	15	22	6.158	0,540	72.670	0,001715	2,023
N79	15	22	6.158	0,540	72.670	0,001715	2,023
N80	15	22	6.158	0,540	72.670	0,001715	2,023
N81	15	22	6.158	0,540	72.670	0,001715	2,023
N82	15	22	6.158	0,540	72.670	0,001715	2,023
N83	15	22	6.158	0,540	72.670	0,001715	2,023
N84	15	22	6.158	0,540	72.670	0,001715	2,023
N85	15	22	6.158	0,540	72.670	0,001715	2,023
N86	15	22	6.158	0,540	72.670	0,001715	2,023
N87	15	22	6.158	0,540	72.670	0,001715	2,023
N88	15	22	6.158	0,540	72.670	0,001715	2,023
N89	5	7	6.158	0,340	31.401	0,001713	0,874
N90	5	7	6.158	0,700	31.401	0,000741	0,874
N90 N91	7	10	6.158	0,700	40.821	0,000741	1,136
N91 N92	7	10	6.158	,	40.821	0,000963	1,136
N92 N93	7	10		0,650		0,000963	
	7		6.158	0,650	40.821		1,136
N94		10	6.158	0,650	40.821	0,000963	1,136
N95	8	12	6.158	0,630	45.217	0,001067	1,259
N96	8	12	6.158	0,630	45.217	0,001067	1,259
N97	8	12	6.158	0,630	45.217	0,001067	1,259
N98	8	12	6.158	0,630	45.217	0,001067	1,259
N99	8	12	6.158	0,630	45.217	0,001067	1,259
Equivalencia	1.152	1.678			5.637.949	0,133015687	157

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 46

DE 56

Velocidad del gas

Se escogió la velocidad del gas como parámetro de análisis para comprobar la efectividad del diseño. La velocidad del gas afecta la capacidad del sistema, la cual puede variar con la presión y el volumen de gas transportado. Se analizaron los puntos críticos en cada tipo de tubería, obteniéndose velocidades dentro del rango permitido (menores a 36,58 m/s.). Los resultados se presentan en la tabla 8.

Resultados del Software

Los cálculos simulados en el software de diseño para la Infraestructura de Distribución en tubería de polietileno se aprecian en la tabla 8. El diagrama final de diseño de la Infraestructura de Distribución arrojada por el simulador por diámetros de tubería se encuentra en la ilustración 7.

PÁGINA 47 **DOCENCIA DE 56**

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

. Tabla 8 - Caudal y presión de la Infraestructura de Distribución por sección de Tubería

Pipe Id	Pipe Name and Notes	Fluid Zone	Material	Inner Diameter (Inches)	Roughness (Mm)	Length (Mts)	Velocity (M/Seg)
1	P1	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	50	6,365
2	P2	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	350	6,365
3	P3	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	350	6,365
4	P4	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	350	6,365
5	P5	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	300	13,82
6	P6	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	850	8,246
7	P7	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	900	8,116
8	P8	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	850	7,539
9	P9	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	900	7,408
10	P10	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	850	6,831
11	P11	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	6,477
12	P12	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	6,123
13	P13	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	5,77
14	P14	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	5,416
15	P15	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	5,285
16	P16	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	4,931
17	P17	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	4,238
18	P18	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	3,919
19	P19	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	3,601
20	P20	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	3,471
21	P21	Methane	2" HDPE SDR 11 (160 psi)	1,917	0.001524	600	2,965
22	P22	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	2,647
23	P23	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	2,516
24	P24	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	2,386
25	P25	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	2,086
26	P26	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	1,786
27	P27	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	600	1,486
28	P28	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	100	2,109
29	P29	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	500	4,494
30	P30	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	500	4,717
31	P31	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	500	4,941
32	P32	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	1400	6,562
33	P33	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	1400	6,786
34	P34	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	2600	8,133
35	P35	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	2300	8,356
36	P36	Methane	3" HDPE SDR 11 (160 psi)	2,826	0,001524	200	4,154
37	P37	Methane	3" HDPE SDR 11 (160 psi)	2.826	0,001524	200	4,051
38	P38	Methane	3" HDPE SDR 11 (160 psi)	2,826	0,001524	200	3,948
39	P39	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	150	5,443
40	P40	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	150	4.642
41	P41	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	300	2,019
42	P42	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	430	0,168
42	P42		4" HDPE SDR 11 (160 psi)	3,632	0,001524	1000	0,166
43	P43	Methane	4" HDPE SDR 11 (160 psi)	·	· ·		0,064
		Methane	` ' '	3,632	0,001524	700	· · · · · · · · · · · · · · · · · · ·
45	P45	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	700	0,252
46	P46	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	800	0,084
47	P47	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	700	0,084
48	P48	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1200	2,216
49	P49	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	650	1,108
50	P50	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1200	2,216
51	P51	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	600	1,108
52	P52	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	400	1,108

PÁGINA 48 DE 56

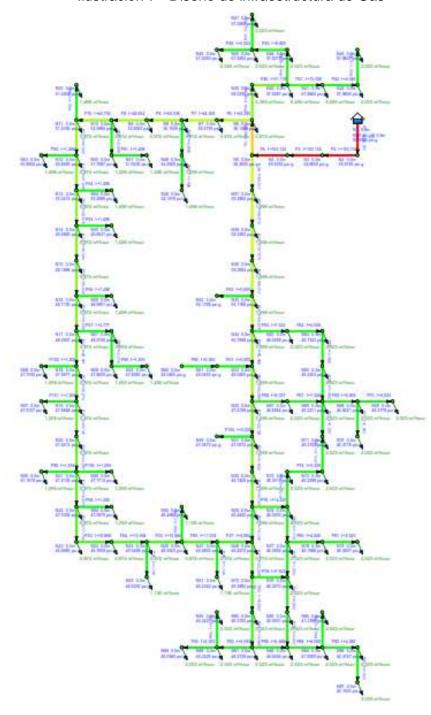
F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

F2	DC2	Mathana	2/4"LIDDE CDD 44 /400:\	0.004	0.004504	200	4.400
53	P53 P54	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	200	1,108
54		Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	300	1,108
55	P55	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	300	1,108
56	P56	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	150	1,108
57	P57	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	300	2,793
58	P58	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	650	1,862
59	P59	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	250	0,931
60	P60	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	800	0
61	P61	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1200	0
62	P62	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	550	0
63	P63	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	1500	3,56
64	P64	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	2000	4,074
65	P65	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	500	2,578
66	P66	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	2000	1,082
67	P67	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	600	3,473
68	P68	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	600	4,429
69	P69	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	700	2,868
70	P70	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	3000	1,496
71	P71	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	3000	1,496
72	P72	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	500	0,34
73	P73	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	500	0,616
74	P74	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	300	1,572
75	P75	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	200	2,528
76	P76	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	300	2,162
77	P77	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	100	3,465
78	P78	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	400	1,137
79	P79	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	400	0,157
80	P80	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	700	1,912
81	P81	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1000	1,496
82	P82	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	500	1,062
83	P83	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	100	2,328
84	P84	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	650	2,026
85	P85	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	1300	2,594
86	P86	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	700	2,187
87	P87	Methane	1" HDPE SDR 11 (160 psi)	1,077	0,001524	700	3,143
88	P88	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1500	5,984
89	P89	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1500	1,496
90	P90	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1500	2,992
91	P91	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1500	1,496
92	P92	Methane	2" HDPE SDR 11 (160 psi)	1,917	0,001524	650	0,905
93	P93	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	1000	1,496
94	P94	Methane	4" HDPE SDR 11 (160 psi)	3,632	0,001524	1000	0,084
95	P95	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	550	0,84
96	P96	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	650	0,84
97	P97	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	320	0,84
98	P98	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	350	0,931
99	P99	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	600	0,931
100	P100	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	450	0,931
101	P101	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	750	0,931
102	P102	Methane	3/4" HDPE SDR 11 (160 psi)	0,861	0,001524	520	0,931
	P103		3/4" HDPE SDR 11 (160 psi)	0,861	0,001524		0,931
103	P 103	Methane	1914 HOLE ONK II (100 bsi)	U,00 I	0,001524	600	U

FUENTE - Autor


PÁGINA 49 DE 56

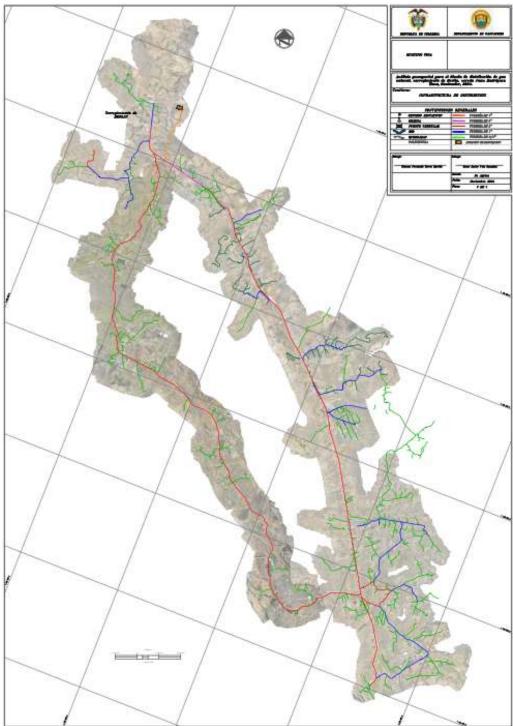
F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

Ilustración 7 - Diseño de infraestructura de Gas

FUENTE - Autor


INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 50

DE 56

Ilustración 8 - Plano de Redes de Distribución

FUENTE - Autor

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 51

DE 56

Como resultado del proceso de análisis topográfico, geomorfológico y de riesgos de desastres en la vereda Juan Rodríguez, corregimiento de Berlín, municipio de Tona (Santander), se logró la elaboración de un plano georreferenciado en el sistema de Coordenadas Magna Sirgas Origen Central Bogotá según la normativa existente, un plano detallado que integra imágenes captadas por drones, datos procesados mediante Sistemas de Información Geográfica (SIG) y herramientas topográficas de precisión. Este producto final permitió diseñar una propuesta técnica para la instalación de la red de distribución de gas natural, considerando con exactitud las características del terreno, las vías de acceso, las zonas de riesgo geológico y la ubicación de usuarios potenciales. El plano resultante constituye una herramienta clave para la toma de decisiones, ya que identifica con claridad la ruta óptima para la infraestructura, minimizando riesgos y optimizado según criterios de seguridad, eficiencia constructiva y viabilidad técnica.

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 52

DE 56

6. CONCLUSIONES

- Luego de analizar las diferentes variables para la ejecución de un proyecto de esta magnitud, podemos concluir que existen varias diferencias que pueden hacer que la prestación del servicio público de gas en los sectores más alejados de una estructura urbana si puedan obtener tan anhelado servicio. Estas diferencias radican en la veracidad y precisión de la información del terreno objetivo, ya que al utilizar aeronaves no tripuladas para la obtención de ortomosaicos y compararlos con la cartografía base del sector podemos evidenciar que la nueva información puede brindar un panorama más claro en cuanto a especificaciones del terreno, ubicación exacta de los usuarios potenciales y vías y rutas de ejecución, pudiendo identificar exactamente cuál es la mejor opción para la instalación de redes optimizando en todo aspecto el proyecto.
- A su vez, la utilización de software avanzado como PIPEFLOW para el cálculo de flujos y diseños de infraestructura y AutoCAD para la ilustración precisa de un plano planta de las redes de distribución garantizan que la prestación futura del servicio sea eficiente económica y segura, logrando así, que aquellos usuarios que utilizaran el servicio para la cocción y calefacción de alimentos puedan tener optimización en la calidad de vida y ahorros económicos.
- El uso de nuevas tecnologías y softwares especializados optimizara recursos y tiempo en posibles futuros proyectos de este tipo o temas relacionados siempre pensando en el bienestar, salud y economía de los futuros beneficiados.

F-DC-125

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 53

DE 56

7. RECOMENDACIONES

Teniendo en cuenta el análisis técnico y geoespacial detallado en el presente trabajo de grado, se recomienda avanzar con la implementación del sistema de distribución de gas natural por redes en la vereda Juan Rodríguez del municipio de Tona, utilizando tubería de polietileno de media densidad (PE80) con diámetros de 2", 1" y ¾". Esta solución ha demostrado ser la más viable desde el punto de vista técnico, económico y operativo para los usuarios potenciales.

■ El uso de tecnología como la fotogrametría mediante drones permitió obtener una cartografía actualizada, esencial para el diseño preciso de la red, la identificación de sectores críticos y la planificación de la infraestructura en conjunto con la topografía y condiciones ambientales del área. Además, la aplicación de modelos digitales de elevación, orto mosaicos y simulaciones de caudal y presión en software especializado (PIPEFLOW) aseguran un diseño óptimo general del sistema.

■ Por lo tanto, se recomienda a las autoridades municipales, entidades competentes y a la comunidad en general, gestionar los recursos técnicos, financieros y administrativos necesarios para la ejecución de este proyecto y la aplicación de nuevas tecnologías y sistemas técnicos para la formulación de futuros proyectos iguales a este.

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 54

DE 56

8. REFERENCIAS BIBLIOGRAFICAS

- COLOMBIA, R. D. (21 de 05 de 2002). *DECRETO 990 DE 2002*. Recuperado el 04 de 16 de 2023, de https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=6070#:~:text=SUPERINTENDENCIA%20DE%20SERVICIOS%20PUBLICOS%20DOMICILIARIOS
- CONGRESO DE COLOMBIA. (22 de 12 de 1993). Obtenido de https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=297
- CONGRESO DE COLOMBIA. (11 de 7 de 1994). Obtenido de https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=2752
- CONGRESO DE COLOMBIA. (11 de 07 de 1994). Obtenido de FUNCION PUBLICA:
- https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=4631
 CORTES POMAR, G., & QUIMBAYO CASALLAS, M. (08 de 2021). PROPUESTA
 DE UN DISEÑO DE SISTEMA DE REDES DE DISTRIBUCIÓN DE GAS
 NATURAL DOMÉSTICO PARA LA VEREDA SAN ROQUE Y ZONAS
 ALEDAÑAS AL CAMPO CERRO GORDO, EN EL DEPARTAMENTO DEL

NORTE DE SANTANDER. BOGOTA D.C., COLOMBIA. Recuperado el 15

de 04 de 2023, de

https://repository.uamerica.edu.co/bitstream/20.500.11839/8633/1/5171589-2021-2-IP.pdf

- Ecopetrol. (22 de 09 de 2014). *ECOPETROL*. Obtenido de https://www.ecopetrol.com.co/wps/portal/Home/multisitios/comercial/es/port afolio/productos-y-servicios/gasnatural/informacion-general-gn/!ut/p/z1/pZJdb4IwFIZ_Dbf00DKsu6OMz
 - kQppP1ZsGFVRakBpn8_RmMyVhMde7ctXme0_a8RRxliNf5vhR5W8o6rw7rV269xXZADWpCTDGlkIxnzoi4Y

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 55

DE 56

- ENERGIA. (2019). Obtenido de minenergia: https://www.minenergia.gov.co/es/misional/hidrocarburos/funcionamiento-del-sector/gas-natural/
- ENERGIAS, M. D. (12 de 02 de 2003). RESOLUCION N° 11 DE 2003. BOGOTA, COLOMBIA. Recuperado el 15 de 04 de 2023, de http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/5c6630c6c5de4e0e0525785a007a6443/\$FILE/Creg011-2003.pdf
- ESRI. (2023). Obtenido de https://support.esri.com/es-es/gis-dictionary/orthophoto GARCIA MOGOLLON, J. (2015). DISEÑO DE GASODUCTOS MEDIANTE EL USO DE HERRAMIENTAS COMPUTACIONALES DE PROPOSITO GENERAL. PIRHUA, PERU. Recuperado el 20 de 04 de 2023, de https://pirhua.udep.edu.pe/bitstream/handle/11042/2410/IME_191.pdf?sequ ence=1
- GOMEZ CUNCANCHON, W. E. (10 de 2020). Propuesta de ruta óptima para el tramo zona II, del ducto de la infraestructura de transporte de hidrocarburos, en el Departamento del Valle del Cauca, utilizando tecnología LIDAR y ortofoto mosaicos. Manizales, Colombia. Recuperado el 16 de 04 de 2023, de https://repositorio.ucm.edu.co/bitstream/10839/3274/1/Propuesta_ruta_%C3 %B3ptima_tramo_zona_II_ducto_infraestructura_transporte_hidrocarburos_
- MINERO-ENERGETICA, U. D. (29 de 09 de 2010). RESOLUCION 417 DE 2010. BOGOTA, COLOMBIA. Recuperado el 18 de 04 de 2023, de https://www1.upme.gov.co/Documents/Normatividad/Resoluciones/0417_20 10.pdf

departamento Valle Cauca utilizando tecnolog%C3%ADa LIDAR ortofot

OTALORA ORREGO, J., & TINOCO, J. C. (04 de 11 de 2016). REDISEÑO DEL GASODUCTO ENTRE POPAYÁN Y PASTO CON EL USO DE LAS

o_mosaicos.pdf

INFORME FINAL DE TRABAJO DE GRADO EN MODALIDAD DE PROYECTO DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO, MONOGRAFÍA, EMPRENDIMIENTO Y SEMINARIO

VERSIÓN: 2.0

PÁGINA 56

DE 56

HERRAMIENTAS ARCGIS Y PIPESIM. BOGOTA D.C., COLOMBIA. Recuperado el 13 de 04 de 2023, de https://repository.uamerica.edu.co/bitstream/20.500.11839/629/1/5111665-2016-2-IP.pdf

- Pedada, S. (5 de 5 de 2023). Obtenido de mind the graph: https://mindthegraph.com/blog/es/que-es-el-analisis-geoespacial/
- REPUBLICA DE COLOMBIA. (18 de 05 de 1940). Obtenido de FUNCION PUBLICA: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=66802
- REPUBLICA DE COLOMBIA. (29 de 12 de 1992). Obtenido de https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=66802
- TONA. (20 de 04 de 2018). ALCADIA DE TONA EN SANTANDER. Obtenido de https://www.tona-santander.gov.co/municipio/geografia?q=extension

https://repository.unab.edu.co/bitstream/handle/20.500.12749/1194/2015_Tesis_Sergio_Abelardo_Zabala_Davila.pdf?isAllowed=y&sequence=1