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Abstract 

Different mechanisms have been designed to generate vibratory 

motion to test the evaluation of seismic control systems to be used in 

structural buildings. These systems are called "shaking-tables" and they 

are usually designed with linear actuators which facilitate the 

implementation of classical control systems for its proper operation. This 

paper presents a position fuzzy control system designed to control the 

displacement behavior of earthquakes on the shaking-table based on a 

slider-crank mechanism. The results show repeatability greater than 

97%, adequate to the validation of anti-seismic controllers on small-scale 

models. 
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Resumen 

Diferentes mecanismos se han diseñado para generar movimientos 

vibratorios que ayuden a la evaluación de sistemas de control antisísmi-

cos, para ser usados en edificaciones civiles. Estos sistemas denominados 

“mesas vibradoras” se diseñan generalmente con actuadores lineales los 

cuales facilitan la implementación de sistemas de control clásicos para su 

correcto funcionamiento. Este trabajo presenta un sistema de control 

fuzzy, orientado a controlar el comportamiento de desplazamiento de 

movimientos telúricos sobre una mesa vibratoria basada en un mecanis-

mo biela-manivela; los resultados presentan una repetitividad superior al 

97%, adecuada para la validación de controladores antisísmicos en mode-

los a pequeña escala. 
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1. INTRODUCTION 

 

A shaking-table is a system used to create agitation move-

ments to be applied in mechanics vibration test or physics models. 

These models are used to analyze the performance and resistance 

to similar events (Seki, Iwasaki, & Hirai, 2010; Seki, Iwasaki, & 

Kawafuku, 2009; Yao, Fu, Hu, & Liu, 2010). In civil engineering 

they are used to make seismic test on scale models like tall build-

ings or long bridges, through simulation of earthquakes intended 

to reproduce the acceleration behavior of an earthquake (Seki, 

Iwasaki, & Kawafuku, 2009). To perform legitimate experiments, 

it is necessary to achieve a high degree of reproducibility and to 

take into account the dynamic behavior of shaking–table to apply 

the appropriate input signals to the system in order to generate 

the desired vibrations in the output (Seki, Iwasaki, Kawafuku, 

Hirai, & Yasuda, 2009; Seki, Iwasaki, & Kawafuku, 2009). 

Due to the fact that most of the shaking-tables that exist are 

designed to generate a profile of acceleration with lineal displace-

ment actuators, the difference in this work is that the shaking-

table uses the angular displacement from two induction motors to 

create linear displacement through a slider-crank mechanism in 

two axis. This movement is made by the coupling of motors to a 

chain and gearbox system to the slider-crank mechanism. 

Having in mind that the displacement of the shaking-table is 

generated by an induction motor, the signals to control it are ap-

plied to each frequency inverter of motor through the analog op-

tion by controlling a digital potentiometer. Accordingly, when the 

mechanic system is coupled with the electronic control system, the 

entire system is a machine with high non-linear performance, and 

as a consequence the mathematical model be complex and with 

high uncertainty. 

On the other hand, due to the fact that earthquakes are sto-

chastic processes, their random features allow the definition the 

maximum and minimum acceleration limits over a ground surface 

(Ceccarelli, Pugliese, Lanni, & Mendes Carvalho, 1999). That’s the 

reason the test made over shaking-tables to the structure analysis 

is based on the reproduction of random earthquakes with known 
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maximum peaks of acceleration (Chen & Zhang, 2008; Murota, 

Feng, & Liu, 2006). 

The implementation of a Fuzzy control system is an adequate 

technique to replicate earthquake signals, due to its good perfor-

mance in systems in which the model is unknown. They allow to 

obtain a high repeatability, which is very important to evaluate 

new seismic control systems on scale buildings over the shaking-

table. In this particular case, the designed Fuzzy control system is 

a Sugeno type, with error signal and rate of change of error like 

input signals and five subsets to each signal, and the controller is 

implemented on the PIC32 Ethernet Starter Kit from Microchip®. 

 

 

2. IDENTIFICATION OF SHAKING-TABLE 

 

In Fig. 1 the slider-crank mechanism used in the shaking-table 

is shown from a superior view. In this figure it can be seen that 

when the motor is turned on, the table moves forward and back-

ward and then it performs a translation in the range of +6 cm to -

6 cm that describes a sine trajectory in time, which is the reason a 

region of lineal behavior was selected. 

 

 
Fig. 1. Slider-Crank mechanism used in shaking-table axis 
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On the other hand, the use of the Fuzzy control system is not 

necessarily an approximation to the shaking-table model, so it was 

calculated by parametric identification techniques to simulate the 

system control and validate with the real system. These models, 

from X axis (North-South) and Y axis (East-West) of the shaking-

table, are presented in (1) and (2), and they have a one-step pre-

diction of 91.8 % and 91.9 % respectively. 
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          (             )
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To validate the error in the identified model with the real re-

sponse, we used the Normalized Root Mean Square Error NRMSE 

given by (3) (Frýza & Hanus, 2003), obtaining errors of 0.0852 and 

0.0672 for X axis and Y axis respectively. In this equation the term 

xi is the simulated output and yi is the real output of the plant 

respectively. 
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3. FUZZY CONTROL SYSTEM DESIGN 

 

The Fuzzy control system is implemented over a hardware de-

vice and a controller based on Sugeno Theory was selected due to 

its computational efficiency (Ross, 2004) (Jang, Gulley, & Math-

Works, 1998). Additionally, the control surface is softer, which 

benefits the plant reactions by the control system. 

The linguistic variables selected to the controller are the error 

and the error rate signals, both from displacement measurements, 

and five fuzzy sets were defined to subdivide the range of linguis-

tic variables, with triangular or trapezoidal shape. This member-

ship functions are selected because they are symmetric, a neces-

sary feature to apply the Weighted Average – WA technique in the 
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Fuzzy Sugeno Controler (Ibrahim, 2003). Fig. 2 shown the final 

Fuzzy sets, to error and error rate, obtained by tuning, which are 

distributed on the range from -5 mm up +5 mm. This range is 

adequate to the control system because the shaking table only 

supports low frequency earthquakes, so the maximum error rate is 

100 millimeters per second, and the sample frequency in this work 

is 200 Hz. 

In Fig. 2 left, the Fuzzy sets are named large negative error 

(LNE), medium negative error (MNE), zero error (ZE), medium 

positive error (MPE), and large positive error (LPE); in Fig. 2 

right, the Fuzzy sets are called large negative error rate (LNER), 

medium negative error rate (MNER), zero error rate (ZER), medi-

um positive error rate (MPER), and large positive error rate 

(LPER). Both are in millimeters. 

 

 
Fig. 2. Fuzzy sets to input error left, and Fuzzy sets to input error rate right 

 

The defuzzification process is based on the Weighted Average 

technique of all the output rules, and it is calculated by (4) (Jang 

et al., 1998) (Tanaka & Wang, 2001). 

 

       
∑     
 
   

∑   
 
    

(4) 

 

Where ωi is the rule weight, N is the number of rules, that in 

this case is 25, and zi is the output function, which in Sugeno 

topology is as in (5). 

 
                         

 
(5) 
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Where a and b are weight constants to the error and error rate 

values, and c is a given offset to the particular output; the param-

eters a, b and c are obtained by tuning the controller. From (4) and 

(5) the control surface for X-axis and Y-axis is obtained, as it is 

shown in Fig. 3, where the output control corresponds to the digi-

tal value that must have digital potentiometer to modify the mo-

tor’s frequency. 

 

 
Fig. 3. Control surface of Y-axis 

 

 

4. SYSTEM CONTROL IMPLEMENTATION 

 

The total system has a software component, made in 

MATLAB®, and a hardware component, implemented over the 

PIC32 Ethernet Starter Kit from Microchip®. In the software the 

seismic signals are uploaded, obtained by the Center of Engineer-

ing Strong Motion Data (CESMD), given in acceleration units 

[cm/s2], which are converted to displacement by double integra-

tion. A base line error is defined and it is eliminated by signal 

processing. The displacement signal is used to generate the earth-

quake in the shaking-table, and this treatment is shown in Fig. 4. 

Although the signal showed in Fig. 4 corresponds to the 

Quetame (Cundinamarca, Colombia) earthquake that happened in 

May 2008 (INGEOMINAS, 2008; RNAC, 2010). This register 

wasn’t used in these experiments, and the Imperial Valley, CA 

earthquake of October 15 1979 was used, because it has low fre-

quency components, ideals for experiments. 

To begin the earthquake test, in the Matlab® Guide the seis-

mic signal is loaded and pre-processed, then it’s transmitted to the 

hardware by a data packet up to 36.000 bytes that contains the X-
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axis and the Y-axis information. This data packet is reordered in 

the hardware, and it is used to generate the earthquake in two 

directions, using two encoders with 100 ppr of resolution to sense 

the displacement and calculated the error signals. With these 

errors the adequate output for the digital potentiometers is ob-

tained to adjust the motor frequency in the inverters. Finally, the 

displacement signals are saved in the hardware and later trans-

mitted to the software to be processed and displayed in the graph-

ic interface. 

 

 
Fig. 4. North-South component of a seismic register converted to velocity and 

displacement 

 

The encoders used to calculate the errors are installed outside 

of the shaking-table, through a rack and pinion mechanism as it’s 

shown in Fig. 5. 

 

 

5. RESULTS 

 

Once the X-axis and Y-axis controllers are tuned by simula-

tion, they are implemented in the PIC32 hardware device. The 

obtained results are shown in Fig. 6, which confirms that the plant 

models obtained by identification works properly, and it has a 

good approximation to the real output. In this test, the real output 
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was obtained without load. In order to validate the test repeatabil-

ity, tests were made for three different cases, without load and 

with 20 kg and 30 kg of load. The results are shown in Fig. 7. 

 

 
Fig. 5. Location of encoders on Shaking-Table 

 

 
Fig. 6. Comparison of simulated and obtained signals. X-axes and Y-axes 

 

In Fig. 6 and Fig. 7 the result of NRMSE are shown, with an 

average NRMSE of 0.0606 for X-axis and 0.0704 for Y-axis in Fig. 

6, and an average NRMSE of 0.0224 for X-axis and 0.0175 for Y-

axis in the repeatability test of Fig. 7. 

To compare the results of the Fuzzy Controller we use two co-

efficients, the coefficient of determination R2 and the intraclass 

correlation coefficient ICC, specifically the two-way random effect 

model. The R2, given in percentage, is used to evaluate the amount 

of variability between the desired signal and the obtained signal; 
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the ICC is used to estimate the repeatability of experiments be-

cause this allows to the systematic bias on T test. The result of 

ICC is like the Pearson coefficient of correlation, it has a value 

from 0 to 1 where a number close to 1 indicates a good repeatabil-

ity. The results obtained in these tests were over 97 % of approxi-

mation, by the analysis of R2 and ICC, and the cumulated NRMSE 

on the entire signal was below 0.16 for X-axis and below 0.12 for 

Y-axis. The coefficient of determination R2 is presented in (6) 

(Montgomery & Runger, 2003) and the intraclass correlation coef-

ficient ICC in (7) (McGraw & Wong, 1996; Weir, 2005). 

 

 
Fig. 7. Repeatability test of Fuzzy control, X-axis and Y-axis 
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In (7), MSR is the mean square between rows test, MSC is the 

mean square between columns test and MSE is the error between 

tests, n is the length of data and k is the total number of test. The 

final result is a number that compare all the tests made. Table 1, 

shows the NRMSE, the R2 and the ICC of X-axis and Y-axis re-
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spectively, for 10 test of the shaking-table with a load given by a 

scale building of 20 kg; this analysis was made in displacement 

domain. 

 
Table 1. X and Y Axis displacements results 

Test 
Seismic signal X-axis Seismic Signal Y-axis 

NRMSE R2 [%] ICC(A,1) NRMSE R2 [%] ICC(A,1) 

1 0.15513 97.616 

0.99949 

0.11341 98.715 

0.99966 

2 0.14686 97.881 0.11319 98.719 

3 0.1426 97.988 0.11552 98.666 

4 0.13543 98.187 0.10865 98.82 

5 0.1423 98.002 0.10745 98.848 

6 0.14539 97.91 0.10931 98.811 

7 0.14181 98.017 0.13112 98.306 

8 0.13569 98.177 0.11067 98.777 

9 0.14728 97.862 0.1057 98.892 

10 0.1351 98.196 0.10879 98.82 

 

 

6. CONCLUSIONS 

 

The implemented displacement control system works properly, 

with high similitude and repeatability of signals, greater than 

97 % for both axes. However, the current resolution of the control 

system is one millimeter, which forces the system to make an 

approximation of the displacement signal. This introduces high 

frequency noise components, which deteriorates the seismic sig-

nals to emulate, and as a consequence the error is increased. 

To reduce this, it is recommended to increase the resolution by 

the introduction of a gear box to the encoder or to replace the 

encoders with other whose resolution is higher, because that the 

current encoder has a resolution of 100 pulses per revolution. 

Another fundamental aspect that involves the behavior of this 

shaking-table is its pulley mechanism, because when it is using 

chains like the transmission medium, there is a dead space, which 

introduces a dead time to the transfer functions of X-axis and Y-

axis. Nevertheless, this problem cannot be eliminated because it is 

inherent to the shaking-table, so any control system must deal 

with it. 
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Additionally, due to the limitations of the entire mechanism, 

this particular shaking-table can only emulate earthquakes with 

low frequency components, fewer than 4 Hz, like the earthquake 

used in this work. As a consequence, new control systems based in 

velocity or acceleration are to be implemented, so to corroborate 

the mechanics capabilities and limitations of the shaking-table, in 

order to create the seismic laboratory at the University. 
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