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Abstract. In structural behavior, the analysis of civil buildings by seismic tests 
has been generalized by the use of shaking tables. This method requires 
advanced control systems. In our research we show the implementation of a 
Model Reference Adaptive Control (MRAC) to control the position of a 
shaking table, modified by the introduction of a Smith predictor to compensate 
the error produced by the system delay. The mechanic is based on a Slider-
crank device. The control system is implemented on a 32 bits platform by 
Microchip, and the control is done via a remote server using the RENATA 
network. The results of our adaptive control system were experimentally 
verified using the shaking table with a 24 kg mass as a load. 

Keywords: Adaptive Control, MRAC, Smith Predictor, Shaking-Table, 
RENATA. 

1 Introduction 

Traditional control systems are sufficient to control any process in which it is knows 
the mathematical model of the plant, especially when the process is lineal. However, 
when the process model is unknown and it has non-linear components, it is necessary 
to implement other kind of control systems designs. These control systems should be 
independent from the model to control [1] [2]. One example of this problem is 
presented in this work, in which it is necessary to control a shaking table that is used 
to analyze the earthquake evaluations for tall buildings or several active antiseismic 
systems that decrease the oscillations of buildings subject to seismic events. 
Generally, shaking tables consists of electrohydraulic servo systems, hydraulic 
actuators, a table and sensor [3–6], but in the present work the shaking table used for 
the test has a different mechanism that generates the displacement on each axis table. 

In this particular case, the shaking table is based on a slider-crank mechanism that 
uses an AC induction motor to generate the linear displacement through a mechanical 
system based in pulleys and with chains to articulate each axis. The motors are 
controlled by frequency inverters through the analog option by controlling a digital 
potentiometer. Figure 1 shows a blocks diagram that explains the entire system 
interconnection. Considering these factors, to obtain a mathematical model of the 
system that includes the mechanical and electrical components will be complex and 
with high uncertainty due to parameters that can't be measured. For that reason, a 
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Table 1. Model Parameters, obtained by identification process 

Parameters X axis Y axis 
KP 82.739 77.977 
Td 0.075121 0.076994 

Zeta 0.40121 -- 
Tw 0.029128 -- 
Tp1 -- 0.021358 

 
ሻݏ௑ሺܩ ൌ 82.739. ݁ି଴.଴଻ହଵଶଵ௦ݏሺ0.0008484ݏଶ ൅ ݏ0.02337 ൅ 1ሻ . (6)

ሻݏ௒ሺܩ ൌ 77.977. ݁ି଴.଴଴଻଻ଶ଻଻௦ݏሺ0.02136 ݏ ൅ 1ሻ . (7)

Equations 6 and 7 are also used to obtain the reference model transfer function in the 
adaptive controller, and the transfer functions used in the loops that modify the 
control parameters θ. 

2.2 Reference Models for X and Y Axes 

From figure 2, the output of the process is the multiplication of the transfer functions 
of the plant GP(s) with the output of the controller U(s) in Laplace domain. Given that 
the control output is defined by equation 3, and the plant model with delay can be 
approximated to a plant model without delay as it proposed in [13], the response Y for 
X axis can be described by equation 8. 

௑ܻሺݏሻ ൌ ሺ1ݏ௣ܭ ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ሺߠଵܴ െ ଶߠ ௑ܻሻ . (8)

By solving the equation 8, the closed-loop transfer function that relates the output YX 
with the input R of the system is: ௑ܻሺݏሻܴሺݏሻ ൌ .௣ܭ ሺ1ݏଵߠ ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶߠ . (9)

In the same way, the closed-loop transfer function that relates the output YY with the 
input R for the Y axis system is: ௒ܻሺݏሻܴሺݏሻ ൌ .௣ܭ ሺ1ݏଵߠ ൅ .1݌ܶ ሻݏ ൅ .௣ܭ ଶߠ . (10)

Equations 9 and 10 are the model-reference transfer functions used in the adaptive 
controllers MRAC. To complete the reference model for each axis, it is just necessary 
to add the delay from each plant model shown in equations 6 and 7, and given the 
appropriate initial values for the variable parameters θ1 and θ2 so that the reference 
models have the desired response for seismic signals. 
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3 Adaptive Controller Design 

Once obtained the reference models, we can obtain the equations that describe the 
change of θ parameters by applying the adaptation MIT rule given in equation 2, but 
like the reference models transfer functions doesn't change with θ, the partial derivate 
of Ym respect to θ, this term can be omitted. Taken this into account, the adaptive 
algorithm can be obtained by: ߲߲݁ߠ ൌ ଵߠ߲߲݁ ൅ ଶߠ߲߲݁ ൌ ଵߠ߲ܻ߲ ൅ ଶߠ߲ܻ߲ . (11)

Equation 11 can be used for both axes, so the equations below are used to obtain the 
equations to describe the change of θ in the adaptive control. 

ଵߠ߲߲݁ ൌ ߲ ൭ .௣ܭ ሺ1ݏଵߠ ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶߠ . ܴሺݏሻ൱߲ߠଵ . (12)

ଵߠ߲߲݁ ൌ .௣ܭ ܴሺݏሻݏሺ1 ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶߠ . (13)

ଶߠ߲߲݁ ൌ ߲ ൭ .௣ܭ ሺ1ݏଵߠ ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶߠ . ܴሺݏሻ൱߲ߠଶ . (14)

ଶߠ߲߲݁ ൌ െܭ௣. .௣ܭ .ଵߠ ܴሺݏሻ൫ݏሺ1 ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶ൯ଶߠ ଶߠ߲߲݁(15) . ൌ െܭ௣. ܻሺݏሻݏሺ1 ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶߠ . (16)

Based on equations 13 and 16, and by using the equation 2, the equation that 
describes the change of θ parameters to update the adaptive controller are: ߠଵ ൌ െ .ߛ ݁. ܴሺݏሻݏ ቆ ሺ1ݏ௣ܭ ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶቇߠ . (17)

ଶߠ ൌ .ߛ ݁. ܻሺݏሻݏ ቆ ሺ1ݏ௣ܭ ൅ 2. .ܽݐܼ݁ .ݓܶ ݏ ൅ ሺܶݓ. ሻଶሻݏ ൅ .௣ܭ ଶቇߠ . (18)

It's important to notice that the reference models obtained in 9 and 10 don't include 
the plant delay, so the equation 17 also has to include this delay. In equation 18 it's 
not necessary because the term Y(s) already includes the delay since it corresponds to 
the real output plant. Also, in equations 17 and 18 and in the reference models 
equations 9 and 10 as well, all the parameters are fixed, and they correspond to the 
initial parameters values obtained by a tuning process of the system. These values are 
shown in table 2. 
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Table 2. Initial Adaptive Control Parameters 

Parameters X axis Y axis 
γ 0.0003 0.00035 
θ1 0.08 0.05 
θ2 0.08 0.05 

 
Figure 5 shows the blocks diagram of the adaptive controller with Smith predictor 

used for both axes. Equations 19 to 22 are the final transfer functions for X axis and 
equations 23 to 26 the transfer functions for Y axis controllers. ܴ݂݈݁݁݁݀݋ܯ_݁ܿ݊݁ݎ௑ ൌ 6.619. ݁ି଴.଴଻ହଵ௦0.0008484 ଷݏ ൅ 0.02337 ଶݏ ൅ ݏ ൅ 6.619  . (19)

௑ݕ݈ܽ݁݀_ݐݑ݋݄ݐ݅ݓ_ݐ݈݊ܽܲ ൌ 82.740.0008484 ଷݏ ൅ 0.02337 ଶݏ ൅ ݏ . ଵߠ_௑݈݁݀݋ܯ(20) ൌ 82.74. ݁ି଴.଴଻ହଵ௦0.0008484 ଷݏ ൅ 0.02337 ଶݏ ൅ ݏ ൅ 6.619 . (21)

 

Fig. 5. Blocks Diagram of the Adaptive Control Implemented in X and Y axes 

ଶߠ_௑݈݁݀݋ܯ ൌ 82.740.0008484 ଷݏ ൅ 0.02337 ଶݏ ൅ ݏ ൅ 6.619 . (22)

௒݈݁݀݋ܯ_݁ܿ݊݁ݎ݂ܴ݁݁ ൌ 3.899. ݁ି଴.଴଻଻௦0.02136 ଶݏ ൅ ݏ ൅ 3.899 . (23)

௒ݕ݈ܽ݁݀_ݐݑ݋݄ݐ݅ݓ_ݐ݈݊ܽܲ ൌ 77.980.02136 ଶݏ ൅ ݏ . (24)

ଵߠ_௒݈݁݀݋ܯ ൌ 77.98. ݁ି଴.଴଻଻௦0.02136 ଶݏ ൅ ݏ ൅ 3.899 . (25)
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The results presented in figure 6 shows that the adaptive controller response has high 
level approximation and repeatability for the different tests made on the shaking table. In 
this case, to analyze the approximation between the desired signal given by the reference 
model and the obtained signal we can use a measurement Normalized Root Mean Square 
Error – NRMSE, given in equation 27 [14], and the measurement of the amount of 
variability between the signals using the coefficient of determination R2 described in 
equation 28 [15]. In both cases, the NRMSE and the R2, two values are obtained, one for 
all the samples in the test and the other eliminating the first samples that takes the system 
to follow the reference model, that is approximately 2,5 seconds. 

ܧܵܯܴܰ ൌ ඨ∑ ሺݔ௜ െ ∑௜ᇱሻଶ௡௜ୀଵݕ ሺݔ௜ሻଶ௡௜ୀଵ . (27)

ܴଶ ൌ 1 െ ∑ ሺݔ௜ െ ∑௜ᇱሻଶ௡௜ୀଵݕ ሺݔ௜ െ ௫௜ሻଶ௡௜ୀଵߤ ൌ 1 െ ௜ሻݔሺݎܽݒሺ݁ሻݎܽݒ . (28)

Table 3 shows the results obtained in 4 tests made on the shaking table with the periodic 
stair sequence for the X-axis, and Table 4 shows the same results for the Y-axis. 

Table 3. NRMSE and R2 results for X-axis 

Test 
All samples Without first 2.5 seconds 

NRMSE R2 NRMSE R2 

1 0.20405 95.936 0.12073 98.536 
2 0.20539 95.919 0.11419 98.689 
3 0.21033 95.703 0.12475 98.435 
4 0.21929 95.411 0.13463 98.191 

Table 4. NRMSE and R2 results for Y-axis 

Test 
All samples Without first 2.5 seconds 

NRMSE R2 NRMSE R2 

1 0.19373 96.272 0.12689 98.412 
2 0.18681 96.547 0.12339 98.484 
3 0.19321 96.322 0.1298 98.313 
4 0.2023 95.968 0.13867 98.073 

 
Finally, figure 7 shows the results when the input of the system is a seismic signal, 

that for the test is the data collected from Imperial Valley, CA earthquake of October 
15 1979. This earthquake was selected because has low frequency components, ideal 
for experiments in this shaking table, and was downloaded from the Center of 
Engineering Strong Motion Data (CESMD). However, in these results can be noticed 
that the Y-axis seismic tests have a slower adaptation time than for the X-axis. This is 
because the initial transitions of displacement in Y-axis have small values, lower than 
10 millimeters unlike the X-axis. 
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Also, it was verified that the system delay can be handled outside of the closed-
loop, so that the reference model can be easier to manipulate, obtaining an 
approximate response to those of the real system. 

Moreover, although it wasn’t mentioned in the document, the sensor resolution 
used for feedback is 1 millimeter, given by an encoder with 100 pulses per revolution. 
The response of the system is appropriate despite the error that is introduced by the 
rounding, obtaining ratios between the desired signals and the output signals above 
90%. For this reason, the sensors will be improved for further works with the shaking 
table system. 

On the other hand, the problem of the slow time for the adaptation in the Y-axis 
that appears for the amplitude of the input signal can be improved with the 
normalization of the MIT rule like is proposed by Astrom in [8], so that no matter 
what is the value of the input signal or the value for the adaptation gain value, the 
adaptive controller will always follow the reference model at the same speed. 

Finally, the first test for the remote access to the system works properly over a 
LAN network, and currently it is validating over the RENATA network, through 
which it is intended to launch a digital control system laboratory based on the shaking 
table system. 
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